The continuing importance of game applications and other numerically intensive workloads has generated an upsurge in novel computer architectures tailored for such functionality. Game applications feature highly parallel code for functions such as game physics, which have high computation and memory requirements, and scalar code for functions such as game artificial intelligence, for which fast response times and a full-featured programming environment are critical. The Cell Broadband Enginee architecture targets such applications, providing both flexibility and high performance by utilizing a 64-bit multithreaded PowerPCt processor element (PPE) with two levels of globally coherent cache and eight synergistic processor elements (SPEs), each consisting of a processor designed for streaming workloads, a local memory, and a globally coherent DMA (direct memory access) engine. Growth in processor complexity is driving a parallel need for sophisticated compiler technology. In this paper, we present a variety of compiler techniques designed to exploit the performance potential of the SPEs and to enable the multilevel heterogeneous parallelism found in the Cell Broadband Engine architecture. Our goal in developing this compiler has been to enhance programmability while continuing to provide high performance. We review the Cell Broadband Engine architecture and present the results of our compiler techniques, including SPE optimization, automatic code generation, single source parallelization, and partitioning.
Developed for multimedia and game applications, as well as other numerically intensive workloads, the CELL processor provides support both for highly parallel codes, which have high computation and memory requirements, and for scalar codes, which require fast response time and a full-featured programming environment. This first generation CELL processor implements on a single chip a Power Architecture processor with two levels of cache, and eight attached streaming processors with their own local memories and globally coherent DMA engines. In addition to processor-level parallelism, each processing element has a Single Instruction Multiple Data (SIMD) unit that can process from 2 double precision floating points up to 16 bytes per instruction. This paper describes, in the context of a research prototype, several compiler techniques that aim at automatically generating high quality codes over a wide range of heterogeneous parallelism available on the CELL processor. Techniques include compiler-supported branch prediction, compiler-assisted instruction fetch, generation of scalar codes on SIMD units, automatic generation of SIMD codes, and data and code partitioning across the multiple processor elements in the system. Results indicate that significant speedup can be achieved with a high level of support from the compiler.
Abstract. This paper describes an algorithm for scalar replacement, which replaces repeated accesses to an array element with a scalar temporary. The element is accessed from a register rather than memory, thereby eliminating unnecessary memory accesses. A previous approach to this problem combines scalar replacement with a loop transformation called unroll-and-jam, whereby outer loops in a nest are unrolled, and the resulting duplicate inner loop bodies are fused together. The effect of unroll-and-jam is to bring opportunities for scalar replacement into inner loop bodies. In this paper, we describe an alternative approach that can exploit reuse opportunities across multiple loops in a nest, and without requiring unroll-and-jam. We also use this technique to eliminate unnecessary writes back to memory. The approach described in this paper is particularly well-suited to architectures with large register files and efficient mechanisms for register-to-register transfer. From our experimental results mapping 5 multimedia kernels to an FPGA platform, assuming 32 registers, we observe a 58 to 90 percent of reduction in memory accesses and speedup 2.34 to 7.31 over original programs.
Our ability to create systems with large amount of hardware parallelism is exceeding the average software developer's ability to effectively program them. This is a problem that plagues our industry. Since the vast majority of the world's software developers are not parallel programming experts, making it easy to write, port, and debug applications with sufficient core and vector parallelism is essential to enabling the use of multi-and many-core processor architectures. However, hardware architectures and vector ISAs are also shifting and diversifying quickly, making it difficult for a single binary to run well on all possible targets. Because of this, retargetability and dynamic compilation are of growing relevance. This paper introduces Intel® Array Building Blocks (ArBB), which is a retargetable dynamic compilation framework. This system focuses on making it easier to write and port programs so that they can harvest data and thread parallelism on both multi-core and heterogeneous many-core architectures, while staying within standard C++. ArBB interoperates with other programming models to help meet the demands we hear from customers for a solution with both greater programmer productivity and good performance.This work makes contributions in language features, compiler architecture, code transformations and optimizations. It presents performance data from the current beta release of ArBB and quantitatively shows the impact of some key analyses, enabling transformations and optimizations for a variety of benchmarks that are of interest to our customers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.