High-mobility group box 1 (HMGB1) mediates various functions according to the location. We tried to investigate the role of HMGB1 in upper airway under hypoxic conditions. We cultured primary normal human nasal epithelium (NHNE) cells under hypoxic conditions and evaluated the movement of HMGB1 by western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level was evaluated to estimate the translocation mechanism of HMGB1. The role of secreted HMGB1 was evaluated by ELISA assay. Furthermore, we collected human nasal mucosa samples and nasal lavage fluids from patients conditioned under hypoxic and non-hypoxic environment, and compared the expression of HMGB1 in human nasal mucosa samples by immunohistochemistry and the levels of HMGB1 in lavage fluids using ELISA assay. Hypoxia induced translocation of HMGB1 into the extracellular area and it was dependent on ROS produced by dual oxidase 2. Secreted HMGB1 was involved in the upregulation of interleukin (IL)-8. In human samples, HMGB1 was translocated from nucleus to the cytoplasm in hypoxic-conditioned nasal mucosa. HMGB1 was increased in nasal lavage samples of chronic rhinosinusitis patients, whose sinus mucosa was supposed to be hypoxic as compared with controls. We suggest that HMGB1 is secreted in hypoxic condition via ROS-dependent mechanism and secreted HMGB1 participates in IL-8 upregulation mediating inflammatory response.
SLC30A8 encodes the b-cell-specific zinc transporter-8 (ZnT-8) expressed in insulin secretory granules. The single-nucleotide polymorphism rs13266634 of SLC30A8 is associated with susceptibility to post-transplantation diabetes mellitus (PTDM). We tested the hypothesis that the polymorphic residue at position 325 of ZnT-8 determines the susceptibility to cyclosporin A (CsA) suppression of insulin secretion. INS (insulinoma)-1E cells expressing the W325 variant showed enhanced glucose-stimulated insulin secretion (GSIS) and were less sensitive to CsA suppression of GSIS. A reduced number of insulin granule fusion events accompanied the decrease in insulin secretion in CsA-treated cells expressing ZnT-8 R325; however, ZnT-8 W325-expressing cells exhibited resistance to the dampening of insulin granule fusion by CsA, and transported zinc ions into secretory vesicles more efficiently. Both tacrolimus and rapamycin caused similar suppression of GSIS in cells expressing ZnT-8 R325. However, cells expressing ZnT-8 W325 were resistant to tacrolimus, but not to rapamycin. The Down's syndrome candidate region-1 (DSCR1), an endogenous calcineurin inhibitor, overexpression and subsequent calcineurin inhibition significantly reduced GSIS in cells expressing the R325 but not the W325 variant, suggesting that differing susceptibility to CsA may be due to different interactions with calcineurin. These data suggest that the ZnT-8 W325 variant is protective against CsA-induced suppression of insulin secretion. Tolerance of ZnT-8 W325 to calcineurin activity may account for its protective effect in PTDM.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.
BACKGROUND AND PURPOSE:Intracranial fusiform aneurysms, which incorporate the branch vessel and require salvaging of the parent vessel, are difficult to manage. The goal of this study was to evaluate the efficacy of reconstructive endovascular treatment of intracranial fusiform aneurysms by using a 1-stage procedure with a stent and balloon.
In the present study, a novel evaluation method involving rapid prototyped (RP) technology and finite element (FE) analysis was used to study the elastic mechanical characteristics of human vertebral trabecular bone. Three-dimensional (3D) geometries of the RP and FE models were obtained from the central area of vertebral bones of female cadavers, age 70 and 85. RP and FE models were generated from the same high-resolution micro-computed tomography (μCT) scan data. We utilized RP technology along with FE analysis based on μCT for high-resolution vertebral trabecular bone specimens. RP models were used to fabricate complex 3D objects of vertebral trabecular bone that were created in a fused deposition modeling machine. RP models of vertebral trabecular bone are advantageous, particularly considering the repetition, risks, and ethical issues involved in using real bone from cadaveric specimens. A cubic specimen with a side length of 6.5 mm or a cylindrical specimen with a 7 mm diameter and 5 mm length proved better than a universal cubic specimen with a side length of 4 mm for the evaluation of elastic mechanical characteristics of vertebral trabecular bones through experimental and simulated compression tests. The results from the experimental compression tests of RP models closely matched those predicted by the FE models, and thus provided substantive corroboration of all three approaches (experimental tests using RP models and simulated tests using FE models with ABS and trabecular bone material properties). The RP technique combined with FE analysis has potential for widespread biomechanical use, such as the fabrication of dummy human skeleton systems for the investigation of elastic mechanical characteristics of various bones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.