A monosomal karyotype (MK), defined as ≥2 autosomal monosomies or a single monosomy in the presence of additional structural abnormalities, was recently identified as an independent prognostic factor conveying an extremely poor prognosis in patients with acute myeloid leukemia (AML). In the present study, after excluding patients with t(15;17), t(8;21), inv(16) and normal karyotypes, 324 AML patients with cytogenetic abnormalities were the main subject of analysis. The incidences of MK were 13% in patients aged 15 to 60 years and 18% in those between 15 and 88 years old. MK was much more prevalent among elderly patients (p < 0.001) and was significantly associated with the presence of -7, -5, del(5q), abn12p, abn17p, -18 or 18q-, -20 or 20q-and CK (for all p < 0.001 except for abn12p p=0.009), and +8 or +8q was less frequent in MK+ AML(p=0.007). No correlation was noted between monosomal karyotype and FAB subtype (p > 0.05); MK remained significantly associated with worse overall survival among patients with complex karyotype (p= 0.032); A single autosomal monosomy contributed an additional negative effect in OS of patients with structural cytogenetic abnormalities (P=0.008). This report presents the prevalence, feature and prognostic impact of MK among a large series of Chinese AML patients from a single center for the first time.
Chimeric antigen receptor (CAR) T‐cell therapy has shown excellent clinical efficacy in patients with hematologic malignancies. However, severe bleeding after this treatment is a life‐threatening complication for most patients. This study evaluated the risk factors associated with bleeding in CAR T treatment and developed a predictive model for this complication. Analysis performed in the First Affiliated Hospital of Suzhou University and external validation launched in Suzhou Hongci Hematology Hospital (Jiangsu, China). We conducted a real‐world study incorporating data from 400 patients with hematologic malignancies treated with CAR T between 1 November 2015 and 1 September 2019. Also, 39 patients from another hospital were selected for external validation. Patients with severe bleeding (hazard ratio [HR] 13.04, 95% confidence interval 5.82–29.18; p < 0.001) had a higher risk of death after CAR T. Stage III and IV cytokine release syndrome (CRS) (odds ratio [OR] 6.07, 95% CI 2.35–16.76; p < 0.001) and higher tumor necrosis factor‐α (TNF‐α) levels (OR 4.00, 95% CI 1.53–11.35; p < 0.001) were independent factors of bleeding in patients after CAR‐T treatment. The predictive model developed by Lasso regression, which selected factors such as CRS period, transfusion volume, platelet percentage, platelet count, thrombinogen time, interleukin 6, and TNF‐α levels, and showed Nomogram, yielded excellent agreement (C‐statistics = 0.905) with the calibration curve, which improved clinical benefit with respect to established bleeding scores such as outpatient bleeding risk index (MOBRI). External validation was performed using 39 patients from another hospital with an AUC of 0.700. Patients with severe bleeding after Car‐T therapy had increased the risk of death. A cross‐validated bleeding risk score based on CRS stages and TNF‐α level show significant prognostic value in patients undergoing CAR‐T treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.