Development of noble-metal single atomic site catalysts with high metal loading is highly required for many important chemical reactions but proves to be very challenging. Herein, we report a Na 2 CO 3 salt-assisted one-pot pyrolysis strategy from EDTA−Pt complex to N-doped graphene with isolated Pt single atomic sites (Pt-ISA/NG) with Pt loading up to 5.3 wt %. The X-ray absorption fine structure analysis and spherical aberration-correction electron microscopy demonstrate an atomic dispersion of single Pt species on graphene support and stabilized by nitrogen in Pt−N 4 structure. The Pt-ISA/NG catalyst exhibits high catalytic activity and reusability for anti-Markovnikov hydrosilylation of various terminal alkenes with industrially relevant tertiary silanes under mild conditions. In hydrosilylation of 1-octene, the Pt-ISA/NG catalyst delivers an overall turnover frequency of 180 h −1 , which is a 4-fold enhancement compared with commercial Pt/C.
In recent years, various non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) have been extensively investigated. The development of an efficient and simple method to synthesize non-precious metal catalysts with ORR activity superior to that of Pt is extremely significant for large-scale applications of fuel cells. Here, we develop a facile, low-cost, and large-scale synthesis method for uniform nitrogen-doped (N-doped) bamboo-like CNTs (NBCNT) with Co nanoparticles encapsulated at the tips by annealing a mixture of cobalt acetate and melamine. The uniform NBCNT shows better ORR catalytic activity and higher stability in alkaline solutions as compared with commercial Pt/C and comparable catalytic activity to Pt/C in acidic media. NBCNTs exhibit outstanding ORR catalytic activity due to high defect density, uniform bamboo-like structure, and the synergistic effect between the Co nanoparticles and protective graphitic layers. This facile method to synthesize catalysts, which is amenable to the large-scale commercialization of fuel cells, will open a new avenue for the development of low-cost and high-performance ORR catalysts to replace Pt-based catalysts for applications in energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.