The Zn-Sb system contains two well-known thermoelectric materials, Zn1-δSb and Zn13-δSb10 ("Zn4Sb3"), and two other phases, Zn9-δSb7 and Zn3-δSb2, stable only at high temperatures. The current work presents the updated phases diagram constructed using the high-temperature diffraction studies and elemental analysis. All phases are slightly Zn deficient with respect to their stoichiometric compositions, which is consistent with their p-type charge transport properties. Either at room or elevated temperatures, Zn1-δSb and Zn13-δSb10 display deficiencies of the main Zn sites and partial Zn occupancy of the other interstitial sites. A phase pure Zn13-δSb10 sample can be obtained from the Zn13Sb10 loading composition, and there is no need to use a Zn-richer composition such as Zn4Sb3. While the Zn13-δSb10 phase is stable till its decomposition temperature of 515 °C, it may incorporate some additional Zn around 412 °C, if elemental Zn is present.
SnTe-based thermoelectric materials are studied as potential substitutes for PbTe. Ge and Bi substitutions combined with the Cu2Te alloying can significantly improve thermoelectric properties of SnTe as shown for (Sn0.5Ge0.5)0.91Bi0.06Te(Cu2Te)0.05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.