A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.
A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.
The straightness measurement systematic errors induced by error crosstalk, fabrication and installation deviation of optical element, measurement sensitivity variation, and the Abbe error in six degree-of-freedom simultaneous measurement system are analyzed in detail in this paper. Models for compensating these systematic errors were established and verified through a series of comparison experiments with the Automated Precision Inc. (API) 5D measurement system, and the experimental results showed that the maximum deviation in straightness error measurement could be reduced from 6.4 to 0.9 μm in the x-direction, and 8.8 to 0.8 μm in the y-direction, after the compensation.
The laser beam drift is a main factor that influences laser collimation measurement accuracies. In such measurements, the common-path compensation method is an efficient way to eliminate errors which are normally produced by the laser beam drift. Based on our current common-path compensation system, compensations for the laser beam drift were studied by different laser beam radii and detectors. The measurements have shown that the compensation effect for 3 mm beam radius is better than the ones of 1.5 mm and 4.0 mm beam radii. Based on this, the ratio between the 3 mm beam radius and the total area of the quadrant detector, which is 36%, has indicated the best compensation effect.
This paper presents the analysis and compensation of the errors crosstalk in our developed simultaneous measuring system for five-degree-of-freedom geometric error. The errors crosstalk, including the yaw crosstalk to the horizontal straightness, the pitch crosstalk to the vertical straightness, the roll crosstalk to the horizontal and vertical straightness, and the roll real value crosstalk to the roll measured value, can all be eliminated with the compensation. A series of experiments is conducted, and the results verify the compensation effect. For a linear stage, compared with an electronic level and a laser interferometer, the residuals are less than 2 00 when the roll errors are compensated, and the largest residuals for the compensated horizontal and vertical straightness are 1.9 and 3.5 μm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.