A Si3N4 core waveguide, matched to a laser mode, is adiabatically tapered into a SiO2:P core waveguide, matched to a fiber mode. When used to couple the light from a semiconductor laser into an optical fiber, a loss of 3.1 dB is obtained, compared to a loss of 4.5 dB obtained with a lensed fiber.
We discuss the implementation of a strategy designed to provide laser-lightemitting reliability assurance for 1.3-μνα InGaAsP/lnP lasers of the planar mesa, buried heterostructure type for use in a submarine cable application. The testing regimes include initial characterization (cosmetic and light-current curve inspection), passive aging (elevated temperatures [85 to 175°C] without bias, with and without humidity [<85-percent relative humidity]), overstress active aging (high temperatures [150°C], high currents [250 mAdc]), and longterm rate-monitoring active aging (elevated temperature [60°C] burn-in [3 mW/facet]). Overstress testing is designed to compel a timely (~10 2 -hour) identification of premature failures, due to modes of degradation other than the long-term ultimately controlling wear-out mode, and to stabilize transient modes. To identify premature failures of the wear-out type, survivors of overstressing are subjected to rate monitoring in which wear-out degradation rates, established in a reasonable time (~10 3 hours), may be sorted. The principal results of the important overstress aging were the detection of an initially occurring saturable degradation mode, present to some extent in most lasers, and a regimen to force its rapid stabilization, so that it would not obscure determination of the activation energy of the wear-out mode. With a credibly determined value for the latter, it was deterministically inferred from * Authors are employees of AT&T Bell Laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.