In this work we fabricate and characterize field-effect transistors based on the solution-processable semiconducting polymer poly(3-hexylthiophene) (P3HT). Applying two independent gate potentials to the electrolyte-gated organic field-effect transistor (EGOFET), by using a conventional SiO(2) layer as the back-gate dielectric and the electrolyte-gate as the top-gate, allows the measurement of the electrical double layer (EDL) capacitance at the semiconductor-electrolyte interface. We record the transfer curves of the transistor in salt solutions of different concentration by sweeping the bottom gate potential for various constant electrolyte-gate potentials. A change of the electrolyte-gate potential towards more negative voltages shifts the threshold voltage of the bottom-gate channel towards more positive back-gate potentials, which is directly proportional to the capacitive coupling factor. By operating the EGOFET in the dual-gate mode, we can prove the dependency of the EDL capacitance on the molarity of the electrolyte according to the Debye-Hückel theory, and additionally show the difference between a polarizable and non-polarizable electrolyte-gate electrode. With the experimentally obtained values for the EDL capacitance at the semiconductor-electrolyte interface we can model the electrolyte-gate transfer characteristics of the P3HT OTFT.
In this paper, we use circuit-level simulations to investigate the synchronization dynamics of spin torque oscillators (STOs) and demonstrate a pattern recognition scheme based on STO dynamics. We perform a sensitivity analysis in order to determine the robustness of the different STO coupling methods, considering parameter variations, such as radius or thickness of STOs. After pointing out the advantages of the cross coupled architecture, we demonstrate a coupling scheme for pattern recognition. Several patterns are encoded in the resistive coupling network and are successfully identified, after the network has been initialized correspondingly. Finally, by extracting the corresponding impulse sensitivity function, we show how an existing analytical phase domain model can be adapted to the STO array. We compare the results of this analytical model with the numerical model of the STO and conclude that they agree well providing thus a fast method for design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.