A lobster-trap video (LTV) system was developed to determine how lobster traps fish for Homarus americanus and how behavioural interactions in and around traps influence catch. LTV consists of a low-light camera and time-lapse video cassette recorder (VCR) mounted to a standard trap with optional red LED arrays for night observations. This self-contained system is deployed like a standard lobster trap and can collect continuous video recordings for >24 h. Data are presented for 13 daytime deployments of LTV (114 h of observation) and 4 day and night deployments (89 h of observation) in a sandy habitat off the coast of New Hampshire, USA. Analyses of videotapes revealed that traps caught only 6% of the lobsters that entered while allowing 94% to escape. Of those that escaped, 72% left through the entrance and 28% through the escape vent. Lobsters entered the trap at similar rates during the day and night and in sandy and rocky habitats. Lobsters generally began to approach the trap very shortly after deployment, and many appeared to approach several times before entering. These data confirm the results of previous laboratory-based studies in demonstrating that behavioural interactions in and around traps strongly influence the ultimate catch.
NiCaS SV measurements are similar to and strongly correlated with Echo SV measurements. This suggests that noninvasive NiCaS technology may be a practical method for measuring SV during HD.
Changes in the heart rates of lobsters (Homarus americanus) were used as an indicator that the animals were capable of sensing a reduction in the salinity of the ambient seawater. The typical response to a gradual (1 to 2 ppt/min) reduction in salinity consisted of a rapid increase in heart rate at a mean threshold of 26.6 +/- 0.7 ppt, followed by a reduction in heart rate when the salinity reached 22.1 +/- 0.5 ppt. Animals with lesioned cardioregulatory nerves did not exhibit a cardiac response to changes in salinity. A cardiac response was elicited from lobsters exposed to isotonic chloride-free salines but not to isotonic sodium-, magnesium- or calcium-free salines. There was little change in the blood osmolarity of lobsters when bradycardia occurred, suggesting that the receptors involved are external. Furthermore, lobsters without antennae, antennules, or legs showed typical cardiac responses to low salinity, indicating the receptors are not located in these areas. Lobsters exposed to reductions in the salinity of the ambient seawater while both branchial chambers were perfused with full-strength seawater did not display a cardiac response until the external salinity reached 21.6 +/- 1.8 ppt. In contrast, when their branchial chambers were exposed to reductions in salinity while the external salinity was maintained at normal levels, changes in heart rate were rapidly elicited in response to very small reductions in salinity (down to 29.5 +/- 0.9 ppt in the branchial chamber and 31.5 +/- 0.3 ppt externally). We conclude that the primary receptors responsible for detecting reductions in salinity in H. americanus are located within or near the branchial chambers and are primarily sensitive to chloride ions.
It has been hypothesized that normal pruning of exuberant branching of afferent neurons in the developing cochlea is caused by the arrival of the olivocochlear efferent neurons and the resulting competition for synaptic sites on hair cells. This hypothesis was supported by a report that afferent innervation density on mature outer hair cells (OHCs) is elevated in animals deefferented at birth, before the olivocochlear system reaches the outer hair cell area (Pujol and Carlier [1982] Dev. Brain Res. 3:151-154). In the current study, this claim was evaluated quantitatively at the electron microscopic level in four cats that were de-efferented at birth and allowed to survive for 6-11 months. A semiserial section analysis of 156 OHCs from de-efferented and normal ears showed that, although de-efferentation essentially was complete in all four cases, the number and distribution of afferent terminals on OHCs was indistinguishable from normal, and the morphology of afferent synapses was normal in both the inner hair cell area and the OHC area. Thus, the postnatal presence of an efferent system is not required for the normal development of cochlear afferent innervation, and the synaptic competition hypothesis is not supported.
It has been hypothesized that normal pruning of exuberant branching of afferent neurons in the developing cochlea is caused by the arrival of the olivocochlear efferent neurons and the resulting competition for synaptic sites on hair cells. This hypothesis was supported by a report that afferent innervation density on mature outer hair cells (OHCs) is elevated in animals deefferented at birth, before the olivocochlear system reaches the outer hair cell area (Pujol and Carlier [1982] Dev. Brain Res. 3:151-154). In the current study, this claim was evaluated quantitatively at the electron microscopic level in four cats that were de-efferented at birth and allowed to survive for 6-11 months. A semiserial section analysis of 156 OHCs from de-efferented and normal ears showed that, although de-efferentation essentially was complete in all four cases, the number and distribution of afferent terminals on OHCs was indistinguishable from normal, and the morphology of afferent synapses was normal in both the inner hair cell area and the OHC area. Thus, the postnatal presence of an efferent system is not required for the normal development of cochlear afferent innervation, and the synaptic competition hypothesis is not supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.