To date, projections of European crop yields under climate change have been based almost entirely on the outputs of crop-growth models. While this strategy can provide good estimates of the effects of climatic factors, soil conditions and management on crop yield, these models usually do not capture all of the important aspects related to crop management, or the relevant environmental factors. Moreover, crop-simulation studies often have severe limitations with respect to the number of crops covered or the spatial extent. The present study based on agroclimatic índices, pro vides a general picture of agroclimatic conditions in western and central Europe (study área lays between 8.5°W-27°E and 37-63.5°N), which allows for a more general assessment of climate-change impacts. The results obtained from the analysis of data from 86 different sites were clustered according to an environmental stratification of Europe. The analysis was carried for the baseline and future climate conditions (time horizons of 2030, 2050 and with a global temperature increase of 5 °C) based on outputs of three global circulation models. For many environmental zones, there were clear signs of deteriorating agroclimatic condition in terms of increased drought stress and shortening of the active growing season, which in some regions become increasingly squeezed between a cold winter and a hot summer. For most zones the projections show a marked need for adaptive measures to either increase soil water availability or drought resistance of crops. This study concludes that rainfed agriculture is likely to face more climate-related risks, although the analyzed agroclimatic indicators will probably remain at a level that should permit rainfed production. However, results suggests that there is a risk of increasing number of extremely unfavorable years in many climate zones, which might result in higher interannual yield variability and constitute a challenge for proper crop management.
This study examines the effects of climate warming on one of the most widely distributed and destructive forest pathogens, Phytophthora cinnamomi. In Europe, the winter survival of the pathogen is the dominant cue for the development of the disease it causes to oaks, especially Quercus robur and Q. rubra. The potential pathogen and disease geographic ranges were compared in France between two reference periods, 1968-1998 and 2070-2099. Simulations were obtained by combining a physiologically based approach predicting the pathogen winter survival in relation to microhabitat temperature (in the phloem of infected trees) with a regionalized climatic scenario derived from a global circulation model. Positive anomalies in winter temperatures calculated with this scenario were in the range 0.5-5 1C between the periods 2070-2099 and the 1968-1998, according to sites and months. As a consequence, higher annual rates of P. cinnamomi survival were predicted, resulting in a potential range expansion of the disease of one to a few hundred kilometers eastward from the Atlantic coast within one century. Based on this example, the study emphasizes the need of a better understanding of the impacts of global change on the biotic constraint constituted by plant pathogens.
We modeled the effects of climate change and two forest management scenarios on wood production and forest carbon balance in French forests using process-based models of forest growth. We combined data from the national forest inventory and soil network survey, which were aggregated over a 50 x 50-km grid, i.e., the spatial resolution of the climate scenario data. We predicted and analyzed the climate impact on potential forest production over the period 1960-2100. All models predicted a slight increase in potential forest yield until 2030-2050, followed by a plateau or a decline around 2070-2100, with overall, a greater increase in yield in northern France than in the south. Gross and net primary productivities were more negatively affected by soil water and atmospheric water vapor saturation deficits in western France because of a more pronounced shift in seasonal rainfall from summer to winter. The rotation-averaged values of carbon flux and production for different forest management options were estimated during four years (1980, 2015, 2045 and 2080). Predictions were made using a two-dimensional matrix covering the range of local soil and climate conditions. The changes in ecosystem fluxes and forest production were explained by the counterbalancing effect of rising CO2 concentration and increasing water deficit. The effect of climate change decreased with rotation length from short rotations with high production rates and low standing biomasses to long rotations with low productivities and greater standing biomasses. Climate effects on productivity, both negative and positive, were greatest on high fertility sites. Forest productivity in northern France was enhanced by climate change, increasingly from west to east, whereas in the southwestern Atlantic region, productivity was reduced by climate change to an increasing degree from west to east.
Abstract. In order to verify the interannual variability of the above-ground biomass of herbaceous vegetation simulated by the ISBA-A-gs land surface model, within the SUR-FEX modelling platform, French agricultural statistics for C3 crops and grasslands were compared with the simulations for the 1994-2008 period.
Abstract. The effects of climate change on forage and crop production are an important question for the farmers and more largely for the food security in the world. Estimating the effect of climate change on agricultural production needs the use of two types of tools: a model to estimate changes in national or local climates and an other model using climatic data to estimate the effects on vegetation. In this paper, we will mainly present the effects of climate change on climatic features, the variability of criteria influencing crop production in various regions of France and some possible effects on crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.