In this work, a study of hydroxyapatite (HAp) powders obtained using both, porcine bones and chemical precursors was carried put. In the case of HAp obtained by means of porcine bones, physical processes as cooking, washing and milling were developed, for removing the organic material from the bones; after that, the powders were submitted to a thermal treatment at 800 °C, during 12 h. This procedure was carried out without adding chemical alkalines that are harmful for the environment and the human health. On the other hand, HAp powders were also synthetized using the chemical precipitation method widely reported, showing successful results. Moreover, both kind of powders were characterized using x ray diffraction, Fourier transformer infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Furthermore, the bioactivity of the materials was determined using the simulated biological fluid (SBF) method. Results showed that the natural HAp exhibited better crystallographic properties. Moreover, according to these results, HAp obtained from porcine bones contains traces of elements as Na and Mg that are favorable for the bioactivity, according to the materials behavior when they are immersed in SBF.
In this work, different methods employed for the analysis of emission spectra are presented. The proposal is to calculate the excitation temperature (Texc), electronic temperature (Te) and electron density (ne) for several plasma techniques used in the growth of thin films. Some of these tecnniques include magnetron sputtering and arc discharges. Initially, some fundamental physical principles that support the Optical Emission Spec-troscopy (OES) technique are described; then, some rules to consider during the spectral analysis to avoid ambiguities are listed. Finally, some of the more frequently used spectroscopic methods for determining the physical properties of plasma are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.