Two tone inter-modulation distortion measurements were performed at 18 GHz to characterize the nonlinearity of Type-I InP/InGaAs/InP and Type-I/II AlInP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs). Two-dimensional hydrodynamic (HD) simulations were also performed, showing that the base push-out and charge accumulation effects are the dominant physical origins of nonlinearity for the Type-I DHBT at high current densities. Comparatively, the Type-I/II DHBT exhibits no such effects. Hence, we conclude that DHBTs having a Type-I/II energy band alignment will have an inherent linearity advantage compared to DHBTs with the Type-I energy band alignment.
The influence of energy band alignment on carrier transport and signal integrity is investigated on fabricated Type-I InP/InGaAs/InP and Type-I/II AlInP/GaAsSb/InP DHBTs. The Type-I double heterojunction bipolar transistor (DHBT) requires the use of a transition region (setback and superlattice layer) in base-collector hetero-interface to minimize the conduction band discontinuity that can cause current blocking in the collector I-V characteristics. Despite the effort, Type-I DHBT exhibits gain compression and base charge accumulation at high current injection, giving a nonlinear microwave operation. In contrast, the Type-I/II DHBT has a favorable band alignment and permits hot electron injection without impedance in both emitter-base and base-collector junctions, resulting in considerable microwave linearity improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.