This paper presents a complete portable laser-based projection system using two one-dimensional magnetic actuated MEMS linear scanning micro-mirrors. Dedicated high speed electronics was developed to drive the MEMS, detect the mirror scanning position at any time and synchronize the two mirrors and the laser pulsation. The achieved projection system head is 3 cm 3 and is able to project static images and videos with projection size of 50 cm diagonal at 50 cm distance with 32x32 px resolution, the resolution is only limited by current optical setup. The circuit building blocks itself can project image with resolution up to QVGA (320x240 px), suitable for information display applications.
Abstract-This paper presents a modeling methodology for substrate current coupling mechanisms. An enhanced model of the diode ensuring continuity of minority carriers is used to build an equivalent schematic, accounting for minority and majority carrier propagation in the substrate. For the first time a typical H-bridge structure is simulated with the proposed methodology. The parasitic current injected in the substrate by a high-voltage structure is simulated in a circuitlevel simulator as well as with a finite elements method. Both are compared to measurements and show a very good agreement. The simulation resources needed by the proposed equivalent schematics are thus greatly reduced in regard to the finite element approach, offering an efficient tool for substrate modeling in smart power IC's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.