This paper constitutes the analysis of the impact of low doped intrinsic p-type EPI thickness (20 µm and 30 µm) and bottom anti-reflective coating on the electrical and optical performance of various PIN photodiodes designs. The intrinsic p-type layer with a target resistivity of 400 Ω cm is an epitaxial layer (iEPI) grown on a low resistive substrate of 20 mΩ cm. Optimization of the photodiode’s spectral responsivity (for a specific wavelength) includes a Bottom Anti-Reflective Coating (BARC) layer deposited over the silicon surface. BARC thickness is optimized for λ = 425 nm, λ = 750 nm and λ = 900 nm wavelengths. With respective BARC in place, the photodiode’s quantum efficiency (QE) approaches 100% for λ = 750 nm with 20 µm and 30 µm iEPI thickness and for λ = 900 nm with 30 µm iEPI reaching also a maximum spectral response of 0.63 A/W at 800 nm. QE of 72% could be achieved at 425 nm. The leakage current varies from 3.5 pA for 20 µm iEPI thickness to 10 pA for 30 µm at 1 V reverse biasing for 365 µm circular PIN photodiode.
Many imaging applications, like medical or space applications, require radiation-hard sensors. Generally, during radiation, many different defects are created, depending on the type of the radiation. With TCAD software, cross-section of a radiation-hard photodiode was simulated, and afterwards the impact of different physical parameters was simulated. Physical parameters like epitaxial layer thickness or the trap density in the bulk, play a huge role towards the responsivity of the photodiode. This paper presents a variation experiment, where relevant physical parameters are varied and analysis of the spectral responsivity and dark current of the photodiode is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.