We recently proposed a phase-sensitive x-ray imaging method called multiple-image radiography (MIR), which is an improvement on the diffraction-enhanced imaging technique. MIR simultaneously produces three images, depicting separately the effects of absorption, refraction and ultra-small-angle scattering of x-rays, and all three MIR images are virtually immune to degradation caused by scattering at higher angles. Although good results have been obtained using MIR, no quantitative model of the imaging process has yet been developed. In this paper, we present a theoretical prediction of the MIR image values in terms of fundamental physical properties of the object being imaged. We use radiative transport theory to model the beam propagation, and we model the object as a stratified medium containing discrete scattering particles. An important finding of our analysis is that the image values in all three MIR images are line integrals of various object parameters, which is an essential property for computed tomography to be achieved with conventional reconstruction methods. Our analysis also shows that MIR truly separates the effects of absorption, refraction and ultra-small-angle scattering for the case considered. We validate our analytical model using real and simulated imaging data.
We describe the design and application of a new in-laboratory diffraction-enhanced x-ray imaging (DEXI) instrument that uses a nonsynchrotron, conventional x-ray source to image the internal structure of an object. In the work presented here, a human cadaveric thumb is used as a test-sample to demonstrate the imaging capability of our instrument. A 22 keV monochromatic x-ray beam is prepared using a mismatched, two-crystal monochromator; a silicon analyzer crystal is placed in a parallel crystal geometry with the monochromator allowing both diffraction-enhanced imaging and multiple-imaging radiography to be performed. The DEXI instrument was found to have an experimentally determined spatial resolution of 160+/-7 mum in the horizontal direction and 153+/-7 mum in the vertical direction. As applied to biomedical imaging, the DEXI instrument can detect soft tissues, such as tendons and other connective tissues, that are normally difficult or impossible to image via conventional x-ray techniques.
The purpose was to study the dosimetric characteristics of the small diameter (≤10.0 mm) BrainLAB cones used for stereotactic radiosurgery (SRS) treatments in conjunction with a Varian Trilogy accelerator. Required accuracy and precision in dose delivery during SRS can be achieved only when the geometric and dosimetric characteristics of the small radiation fields is completely understood. Although a number of investigators have published the dosimetric characteristics of SRS cones, to our knowledge, there is no generally accepted value for the relative output factor (ROF) for the 5.0 mm diameter cone. Therefore, we have investigated the dosimetric properties of the small (≤10.0 mm) diameter BrainLAB SRS cones used in conjunction with the iPlan TPS and a Trilogy linear accelerator with a SRS beam mode. Percentage depth dose (PDD), off‐axis ratios (OAR), and ROF were measured using a SRS diode and verified with Monte Carlo (MC) simulations. The dependence of ROF on detector material response was studied. The dependence of PDD, OAR, and ROF on the alignment of the beam CAX with the detector motion line was also investigated using MC simulations. An agreement of 1% and 1 mm was observed between measurements and MC for PDD and OAR. The calculated ROF for the 5.0 mm diameter cone was 0.692±0.008 — in good agreement with the measured value of 0.683±0.007 after the diode response was corrected. Simulations of the misalignment between the beam axis and detector motion axis for angles between 0.5°–1.0° have shown a deviation > 2% in PDD beyond a certain depth. We have also provided a full set of dosimetric data for BrainLAB SRS cones. Monte Carlo calculated ROF values for cones with diameters less than 10.0 mm agrees with measured values to within 1.8%. Care should be exercised when measuring PDD and OAR for small cones. We recommend the use of MC to confirm the measurement under these conditions.PACS numbers: 87.53.Ly, 87.55.‐x, 87.53.Bn, 87.55.K‐
Interstitial brachytherapy (IBT) is often utilized to treat women with bulky endometrial or cervical cancers not amendable to intracavitary treatments. A modern trend in IBT is the utilization of magnetic resonance imaging (MRI) with a high dose rate (HDR) afterloader for conformal 3D image‐based treatments. The challenging part of this procedure is to properly complete many sequenced and co‐related physics preparations. We presented the physics preparations and clinical workflow required for implementing MRI‐based HDR IBT (MRI‐HDR‐IBT) of gynecologic cancer patients in a high‐volume brachytherapy center. The present document is designed to focus on the clinical steps required from a physicist’s standpoint. Those steps include: (a) testing IBT equipment with MRI scanner, (b) preparation of templates and catheters, (c) preparation of MRI line markers, (d) acquisition, importation and registration of MRI images, (e) development of treatment plans and (f) treatment evaluation and documentation. The checklists of imaging acquisition, registration and plan development are also presented. Based on the TG‐100 recommendations, a workflow chart, a fault tree analysis and an error‐solution table listing the speculated errors and solutions of each step are provided. Our workflow and practice indicated the MRI‐HDR‐IBT is achievable in most radiation oncology clinics if the following equipment is available: MRI scanner, CT (computed tomography) scanner, MRI/CT compatible templates and applicators, MRI line markers, HDR afterloader and a brachytherapy treatment planning system capable of utilizing MRI images. The OR/procedure room availability and anesthesiology support are also important. The techniques and approaches adopted from the GEC‐ESTRO (Groupe Européen de Curiethérapie ‐ European Society for Therapeutic Radiology and Oncology) recommendations and other publications are proven to be feasible. The MRI‐HDR‐IBT program can be developed over time and progressively validated through clinical experience, this document is expected to serve as a reference workflow guideline for implementing and performing the procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.