Bipolar membranes consist of a layered ion-exchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor p-n devices as both of them present current-voltage curves exhibiting similar rectification properties. In this article, we present some current-voltage curves obtained for different-bipolar membranes ate several temperatures. The results can be interpreted in terms of a simple model for ion transport and field-enhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane interface. The effects of temperature are taken into account by introducing an Arrhenius-type relationship for the dependence of the forward rate constant of the reaction on temperature. Finally, comparison between theory and experiments provides reasonable values for the parameters introduced in the theoretical model. The analysis aims at developing a better physical understanding of a process in which chemical reactions and transport phenomena are coupled in such a way that the potential technological applications depend strongly on this coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.