We report Raman and photoluminescence spectra of mono- and few-layer WSe2 and MoSe2 taken before and after exposure to a remote oxygen plasma. For bilayer and trilayer WSe2, we observe an increase in the photoluminescence intensity and a blue shift of the photoluminescence peak positions after oxygen plasma treatment. The photoluminescence spectra of trilayer WSe2 exhibit features of a bilayer after oxygen plasma treatment. Bilayer WSe2 exhibits features of a monolayer, and the photoluminescence of monolayer WSe2 is completely absent after the oxygen plasma treatment. These changes are observed consistently in more than 20 flakes. The mechanism of the changes observed in the photoluminescence spectra of WSe2 is due to the selective oxidation of the topmost layer. As a result, N-layer WSe2 is reduced to N-1 layers. Raman spectra and AFM images taken from the WSe2 flakes before and after the oxygen treatment corroborate these findings. Because of the low kinetic energy of the oxygen radicals in the remote oxygen plasma, the oxidation is self-limiting. By varying the process duration from 1 to 10 min, we confirmed that the oxidation will only affect the topmost layer of the WSe2 flakes. X-ray photoelectron spectroscopy shows that the surface layer WOx of the sample can be removed by a quick dip in KOH solution. Therefore, this technique provides a promising way of controlling the thickness of WSe2 layer by layer.
We report the use of surface-enhanced Raman scattering (SERS) to measure the vibrational Stark shifts of surface-bound thiolated-benzonitrile molecules bound to an electrode surface during hydrogen evolution reactions (HERs). Here, the electrode surface consists of Au nanoislands deposited both with and without an underlying layer of monolayer graphene on a glass substrate. The Stark shifts observed in the nitrile (C-N) stretch frequency (around 2225 cm) are used to report the local electric field strength at the electrode surface under electrochemical working conditions. Under positive (i.e., oxidative) applied potentials [vs normal hydrogen electrode (NHE)], we observe blue shifts of up to 7.6 cm, which correspond to local electric fields of 22 mV/cm. Under negative applied potentials (vs NHE), the C-N stretch frequency is red-shifted by only about 1 cm. This corresponds to a regime in which the electrochemical current increases exponentially in the hydrogen evolution process. Under these finite electrochemical currents, we estimate the voltage drop across the solution ( V = IR). Correcting for this voltage drop results in a highly linear electric field versus applied electrochemical voltage relation. Here, the onset potential for the HER lies around 0.2 V versus NHE and the point of zero charge (PZC) occurs at 0.04 V versus NHE, based on the capacitance-voltage ( C- V) profile. The solution field is obtained by comparing the C-N stretch frequency in solution with that obtained in air. By evaluating the local electric field strength at the PZC and the onset potential, we can separate the solution field from the reaction field (i.e., electrode field), respectively. At the onset of HER, the solution field is -0.8 mV/cm and the electrode field is -1.2 mV/cm. At higher ion concentrations, we observe similar electric field strengths and more linear E-field versus applied potential behavior because of the relatively low resistance of the solution, which results in negligible voltage drops ( V = IR).
A robust and reliable method for improving the photocatalytic performance of InP, which is one of the best known materials for solar photoconversion (i.e., solar cells). In this article, we report substantial improvements (up to 18×) in the photocatalytic yields for CO2 reduction to CO through the surface passivation of InP with TiO2 deposited by atomic layer deposition (ALD). Here, the main mechanisms of enhancement are the introduction of catalytically active sites and the formation of a pn-junction. Photoelectrochemical reactions were carried out in a nonaqueous solution consisting of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4), dissolved in acetonitrile, which enables CO2 reduction with a Faradaic efficiency of 99% at an underpotential of +0.78 V. While the photocatalytic yield increases with the addition of the TiO2 layer, a corresponding drop in the photoluminescence intensity indicates the presence of catalytically active sites, which cause an increase in the electron-hole pair recombination rate. NMR spectra show that the [EMIM](+) ions in solution form an intermediate complex with CO2(-), thus lowering the energy barrier of this reaction.
We report measurements of photocatalytic water splitting using Au films with and without TiO coatings. In these structures, a thin (3-10 nm) film of TiO is deposited using atomic layer deposition (ALD) on top of a 100 nm thick Au film. We utilize an AC lock-in technique, which enables us to detect the relatively small photocurrents (∼μA) produced by the short-lived hot electrons that are photoexcited in the metal. Under illumination, the bare Au film produces a small AC photocurrent (<1 μA) for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to hot electrons and hot holes, respectively, that are photoexcited in the Au film. The samples with TiO produce a larger AC photocurrent indicating that hot electrons are being injected from the metal into the TiO semiconductor where they then reduce hydrogen ions in solution forming H (i.e., 2H + 2e → H). The AC photocurrent exhibits a narrow peak when plotted as a function of reference potential, which is a signature of hot electrons. Here, we photoexcite a monoenergetic source of hot electrons, which produces a peak in the photocurrent, as the electrode potential is swept through the resonance with the redox potential of the desired half-reaction. This stands in contrast to conventional bulk semiconductor photocatalysts, whose AC photocurrent saturates beyond a certain potential (i.e., light limited photocurrent). The photocurrents produced at the metal-liquid interface are smaller than those of the metal-semiconductor system, mainly because, in the metal-semiconductor system, there is a continuum of energy and momentum states that each hot electron can be injected into, while for an ion in solution, the number of energy and momentum states are very small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.