Internet of things (IoT) has been widely used in development of technology recently. IoT could be interpreted as communication between devices using internet. The advance of IoT technology can ease lot of works, including king control of hydroponic system, so plant treatment can be done anywhere and anytime. Hydroponic is the best solution to people in urban area, who lacks land for greening. Components required in the IoT are devices that have an IoT module, device(s) to connect to Internet such as router or modem, and a database where everythings collected. The purpose of this research is to utilize IoT technology to monitor and control the condition of plants on the hydroponics system remotely. Sensor results processing from end device microcontroller will be sent by XBee to the server microcontroller and displayed to ThingSpeak web server. An application is made for ThingSpeak-connected smartphones that able to monitor and control the system anytime and anywhere. The control will send a logic of one or zero to ThingSpeak and forwarded to the device.
<span lang="EN-US">Coronavirus disease (COVID-19) pandemic has succeeded in shaking the whole world. This situation requires medical personnel to work extraordinarily to treat COVID-19 patients with very high risk of transmission. For this reason, this study aimed to helping medical personnel handle COVID-19 patients through robotic technology. The development method in this study is proposed as a way to develop robots to serve patients in isolation rooms controlled at a distance away from other rooms. From technical testing, the movement of the robot with a load of 12.59 kg only experienced a speed slowdown which was not too significant, namely at 0.43s with an average percentage of slowdown of 8.96%. The accuracy of the proximity sensor testing is close to perfect with an accuracy percentage of 99.62%. The robot control distance was monitored and running well. Also, the increase in motor temperature is not too large, supported by measurement results of 32.13%. From non-technical testing, based on the test results of the feasibility test of all respondents with 25 indicators reached a feasibility level of 91.46%. In other words, healthcare mobile robots developed for helping medical personnel in dealing with COVID-19 patients are very feasible to be applied in hospitals.</span>
Baby incubator is very important to keep the newborn’s body temperature especially for premature babies. Premature babies is the babies that born less than 37 weeks and has less than 2500 grams body weight. Baby incubator is designed to have a lenght of 70 cm, a width of 40 cm, and a height of 60 cm. The system of baby incubator will automatically turn on or turn off the fan, heater or humidifier in accordance with the range of temperature and humidifier that has been set. The range of humidifier inside the baby incubator is 40% - 60%. The range of temperature can be set in a Graphical User Interface (GUI). At GUI, user can fill and show babies profile, babies activity, level of baby’s bilirubin, and the range of temperature. Those Datas are saved in a database’s tables. GUI can show the temperature and humidity of babies incubator in form of graph. Babies monitoring can be done by wireless. There is a monitoring device that can buzz if the baby is crying. This system has a database that can store incubator room temperature-humidity data, baby’s temperature, sound counters, biodata, activity, bilirubin and incubator temperature regulation. Can also provide information about the incubator's humidity and baby's temperature on the LCD and GUI and can save the record of the activities carried out by the baby, as well as keep a record of the baby's bilirubin value and turn on the lights automatically according to the bilirubin value inputABSTRAK:Inkubator bayi sangat berperan penting untuk menjaga suhu tubuh bayi baru lahir khususnya bagi bayi prematur. Bayi prematur adalah bayi yang lahir kurang dari 37 minggu dan memiliki berat badan kurang dari 2500 gram. Inkubator bayi yang dirancang memiliki ukuran ruang panjang 70 cm, lebar 40 cm, dan tinggi 60 cm. Sistem dari inkubator bayi ini akan secara otomatis menyalakan atau mematikan kipas, heater atau humidifier sesuai dengan batas suhu dan kelembaban yang telah diatur. Batas kelembaban udara di dalam inkubator bayi adalah sebesar 40% sampai 60%. Batas suhu inkubator bayi diatur sesuai dengan umur dan berat badan bayi. Pengaturan batas suhu inkubator bayi dapat diatur pada sebuah Graphical User Interface (GUI). Pada GUI, pengguna dapat mengisi dan menampilkan biodata bayi, aktivitas bayi, tingkat bilirubin bayi dan batas suhu inkubator yang diinginkan. Data-data tersebut disimpan pada tabel-tabel yang berada pada sebuah basis data. GUI juga dapat menampilkan suhu dan kelembaban inkubator bayi dalam bentuk grafik. Pemantauan bayi dapat dilakukan secara wireless. Terdapat sebuah alat pemantau yang akan berbunyi apabila bayi menangis. Sistem ini memiliki database yang dapat menyimpan data suhu-kelembaban ruang inkubator, suhu tubuh, counter suara, biodata, aktivitas, bilirubin dan pengaturan temperatur inkubator. Juga dapat memberikan informasi mengenai suhu-kelembaban inkubator dan suhu tubuh bayi pada LCD dan GUI dan dapat menyimpan record aktivitas yang dilakukan bayi, serta menyimpan record nilai bilirubin bayi dan menyalakan lampu secara otomatis sesuai dengan nilai bilirubin yang di-input.
in this modern era, Electricity is the energy needed for human life. The dominant human needs for using electronics, lighting and running the machine make the electricity has an important thing. All of them makes electricity must be supplied so that the tools can work. Many of electronics used to make electricity credit on kWh meter prepaid will quickly run out. The impact of power loss that happens repeatedly because depletion of electricity credit makes electronics has short life, this is often happens because the user cannot monitor kWh meter prepaid. In this project, system can also monitor the status of electricity credit, abnormal incident and the estimated time of electricity credits running out. This system uses 3 photodiode sensors. It's for detecting pulse status when the pulse is at a minimum condition of 10 kWh, detecting an abnormal incident in case of damage or problems and detection estimated pulse depletion time to find out how long the electrical electricity credit has run out. This system is designed to detect the change of kWh status from the indicator LED at kWh meter. The receive data will be processed to determine the condition of the remaining pulse or kWh meter state. The Controller of this system uses microcontroller which receive data from sensor. This system successfully displays data on LCD and LED indicator and can send data to user number via SMS when entering the minimum limit, while the pulse at 7, 4 and 1 kWh and gives the estimated timeout of deplection pulse. With this monitoring system created is expected to reduce anxiety about the depletion of electricity pulse when leaving the machine or electronic who always standby without supervision
The accumulation of electronic waste is starting to be in the spotlight throughout the world. Apart from these problems robotics activities are increasingly developing throughout the world. Many robotics competitions are held as a forum for the creativity of a community so that inevitably the use of electronic components is increasing. The use of electronic components can be a trigger for the accumulation of electronic waste. This cannot be avoided because in the process of developing the robot it is possible for the electronic modules that be used in the experiment are have some problems so they have to replaced with new electronic modules. To minimize the accumulation of electronic waste can be done by making a portable electronic module so that several components can be installed and removed easily. Portability of a good electronic module can minimize component replacement if there is damage to the module. In this study discussed about the design of Robot Line Follower which can be assembled in a portable manner in which there are several modules that can be easily installed and removed. The sensor used in this robot is a photodiode, involving the Arduino Nano controller as a control center, L298N motor driver as a motor driver, and a 12V DC motor as an actuator. Not forgetting also the robot body is designed using acrylic to support and combine all line follower robot modules. The design of line follower robots is portable so that each module can be installed and removed easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.