Sb-Te and Bi-Te compounds are key components of thermoelectric or phase change recording devices. These two binary systems form commensurately/incommensurately modulated long-period layer stacking structures known as homologous phases that comprise discrete intermetallic compounds and X phases. In the latter, the homologous structures are not discrete but rather appear continuously with varying stacking periods that depend on the binary composition. However, the regions over which these X phases exist have not yet been clarified. In this study, precise synchrotron X-ray diffraction analyses of various specimens were conducted. The results demonstrate that the X phase regions are located between Sb 20 Te 3 and Sb 5 Te 6 in the Sb-Te system and between Bi 8 Te 3 and Bi 4 Te 5 in the Bi-Te system.
We prepared polycrystalline samples of GeBi 6Àx In x Te 10 (x = 0, 0.06, 0.18, 0.3, and 0.6) by melting a stoichiometric mixture of Ge, Bi, In, and Te, followed by quenching in water and annealing at 723 K for 1 week. Under these preparation conditions and irrespective of the degree of In-substitution, the samples contained two different periodic structures: GeBi 6 Te 10 and GeBi 4 Te 7 structures. The relationship between the Seebeck coefficient, electrical resistivity, and phase fraction of the two structures was investigated at room temperature. We concluded that changes in the transport properties for all samples may reflect a mixture effect of the phase fraction of the two structures and the amounts of In-substitution in the framework of the assumed structure model in this study. The thermoelectric properties of the samples with x = 0 and 0.18 were determined from 300 K to 723 K from the measured electrical properties and the reported lattice thermal conductivity. The sample with x = 0.18 had the highest dimensionless figure of merit: ZT max = 0.11 at 466 K, which was 1.8 times larger than that of the sample with x = 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.