It is well known that the Sb–Te binary system has a large number of incommensurately or commensurately modulated structures between Sb and Sb2Te3 compounds. These structures, which are long‐period trigonal stacking structures, possess their own modulation period γ, according to their composition in the thermal equilibrium. However, the structure of sputtered Sb–Te films with various compositions between the two compounds at both ends formed in a non‐thermal equilibrium showed smaller γ values, than those expected from their compositions without exception. A smaller γ value implies that its structure is closer to that of Sb with the shortest period in all Sb–Te modulated structures. With increase in temperature, all these transient structures with smaller γ, however, became stable, accompanying an increase of γ to acquire their original modulated structures.
We studied the crystal structure and thermoelectric properties of polycrystalline GeInxSb6−xTe10 (x = 0, 0.18, 0.3, and 0.6). Rietveld and Le Bail analyses showed that all compositions crystallized in trigonal structures with a 51-layer period. Substituting In decreased both the lattice and electronic thermal conductivity, as well as markedly increased the Seebeck coefficient. We ascribed this increase to increases in the effective mass of the carriers, likely caused by the formation of additional energy states near the Fermi level. In GeIn0.6Sb5.4Te10, we found a maximum ZT of 0.75 at 710 K, 1.9 times higher than that of GeSb6Te10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.