Carbon nanomaterials possess superb properties and have contributed considerably to the advancement of integrated point-of-care chemical and biological sensing devices. Graphene has been widely researched as a signal transducing and sensing material. Here, a grass-like laser-scribed graphene (LSG) was synthesized by direct laser induction on common polyimide plastics. The resulting LSG grass was employed as a disposable electrochemical sensor for the detection of three neurotransmitters, dopamine (DA), epinephrine (EP), and norepinephrine (NE), and in the presence of uric acid and ascorbic acid as potential interferants, using differential pulse voltammetry and cyclic voltammetry. The LSG grass sensor achieved sensitivities of 0.243, 0.067, and 0.110 μA μM −1 for DA, EP, and NE, respectively, whereas the limits of detection were 0.43, 1.1, and 1.3 μM, respectively. The selectivity of LSG grass was excellent for competing biomarkers with high structural similarity (EP vs NE and EP vs DA). The exceptional performance of LSG grass for DA, EP, and NE detection holds a promising future for carbon nanomaterial sensors with unique surface morphologies.
Oxidative stress plays a pivotal role in the pathogenesis of many diseases, but there is no accurate measurement of oxidative stress or antioxidants that has utility in the clinical setting. Cyclic Voltammetry is an electrochemical technique that has been widely used for analyzing redox status in industrial and research settings. It has also recently been applied to assess the antioxidant status of in vivo biological samples. This systematic review identified 38 studies that used cyclic voltammetry to determine the change in antioxidant status in humans and animals. It focusses on the methods for sample preparation, processing and storage, experimental setup and techniques used to identify the antioxidants responsible for the voltammetric peaks. The aim is to provide key information to those intending to use cyclic voltammetry to measure antioxidants in biological samples in a clinical setting.
The role of mitochondrial ROS production and signalling in muscle adaptations to exercise training has not been explored in detail. Here we investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 ± 7 years, VO2peak: 39.6 ± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 x 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 hours after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. MitoQ supplementation augmented acute exercise-induced increases in skeletal muscle mRNA expression of the major regulator of proteins involved in mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Despite this, training-induced increases in skeletal muscle mitochondrial content were unaffected by MitoQ supplementation. HIIT-induced increases in VO2peak and 20 km time trial performance were also unaffected by MitoQ while MitoQ augmented training-induced increases in peak power achieved during the VO2peak test. These data suggest that MitoQ supplementation enhances the effect of training on peak power, which may be related to the augmentation of skeletal muscle PGC1α expression following acute exercise. However, this effect does not appear to be related to an effect of MitoQ supplementation on HIIT-induced mitochondrial biogenesis in skeletal muscle and may therefore be the result of other adaptations mediated by PGC1α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.