Oxidative stress has been considered as a major cause of cellular injuries in various clinical abnormalities. One of the possible ways to prevent reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical therapies to augment the endogenous antioxidant defense capacity. The present study found that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a chalcone isolated from the buds of Cleistocalyx operculatus, possessed cytoprotective activity in PC12 cells treated with H(2)O(2). The results showed that DMC could effectively increase cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) reduction], decrease the cell apoptotic percentage [annexin V/propidium iodide (AV/PI) assay], prevent the membrane from damage [lactate dehydrogenase (LDH) release], scavenge ROS formation, reduce caspase-3 activity, and attenuate the decrease of mitochondrial membrane potential (MMP) in PC12 cells treated with H(2)O(2). Meanwhile, DMC increased the catalytic activity of superoxide dismutase (SOD) and the cellular amount of glutathione (GSH), decreased the cellular amount of malondialdehyde (MDA), and decreased the production of lipid peroxidation in PC12 cells treated with H(2)O(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.