To date, the impacts of agriphotovoltaic (APV) condition on the production yield of crop have been studied; however, the effect of APV production on the sensorial quality and consumer acceptability of the produce remains unexplored. Therefore, to address this knowledge gap, we cultivated “Winter Storm” cabbage under solar panels (20.16 kW) and in open field in 2020. The weight and diameter reduction rate of fresh cabbage grown under APV condition compared to open-field conditions were 9.7% and 1.2%, respectively. The levels of glucosinolates and their hydrolysis products were not significantly different in the fresh cabbage between the two conditions. The amount of volatile organic compounds, which may affect the perception of smell, were significantly higher in the cabbage juice prepared from the ones grown in open-field conditions than in the juice prepared from cabbages grown under APV conditions (n = 3, p < 0.01). However, untrained subjects could not distinguish the difference in the quality of the 2 sets of cabbage juices in the triangle test (n = 70, p = 0.724). Regardless of the distinguishing features of color, aroma, and taste, the subjects did not have any preference between the two different cabbage juices.
The increase in world population by an average rate of 2% per year causes critical issues on energy and foods. By 2050, food demand will increase to 35~56% more than in 2010 due to the growing population. Agrivoltaic systems allow us to reach sustainable food and electricity-production goals with high land-use efficiency. In this study, the yield, antioxidant capacity, and secondary metabolite of broccoli and electricity production were analyzed under an agrivoltaic system over 3 cultivation periods. Based on energy production, an economic analysis of agrivoltaic was carried out. In addition, our study also reported that agrivoltaic with additional shading treatment produced greener broccoli with a higher level of consumer preference than open-field grown ones. The yield, antioxidant capacity, some glucosinolates and hydrolysis products of broccoli grown under an agrivoltaic system were not significantly different from those of broccoli grown in the open-field.
Agriphotovoltaic (APV) systems allow the simultaneous production of crops and electricity in the same land area. Since the reduction of yield caused by APV systems is important for food security, studies to improve the yield have been conducted steadily. However, there have been limited data on the appearance, quality, and metabolomic changes of crops. Therefore, in this study, we evaluated the visual qualities and metabolites as well as the yield of broccoli grown using an APV system during the fall season. In addition, additional shading treatment was performed, and the same qualities were evaluated. In the spring season, an additional cultivar that does not express anthocyanins was cultivated. Glucosinolate content was more sensitive to the seasonal environment and the type of cultivar than it was to treatment type. The additional shading treatment had a positive effect on the visual qualities of anthocyanin-expressing broccoli cultivar regardless of the season, and we observed that even a cultivar that does not express anthocyanins can be greener. Regardless of cultivar, higher chlorophyll content was detected in broccoli florets with additional shading treatment under the APV system. In addition, reduced anthocyanin content was observed (6.1 mg g-1 DW; about 20% of that obtained on open-field). Aspartic acid content was enhanced upon additional shading treatment. Pathway analysis revealed changes in anthocyanin, alanine, aspartic acid, and glutamic acid metabolism. Overall, our findings suggests that it is possible to produce crops with better visual qualities by utilizing APV systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.