Grape pomace retains polyphenols in the peels and in the seeds after winemaking, which is indicative of the high valorization potential of this industrial waste. There is strong evidence that phenolics are robust antioxidants and confer photoprotection; thus, it is rational to apply these active compounds from winemaking waste to sunscreens, in order to increase UV protection. Despite the importance of this class of cosmetics to public health, more efficacious strategies are still needed to overcome the problems caused by the photoinstability of some UV filters. The hydroethanolic extract of Vitis vinifera L. grapes was obtained by percolation and then lyophilized. Six formulations were developed: Type I—cosmetic base and UV filters; Type II—cosmetic base and extract; and Type III—cosmetic base, extract and UV filters. Each formulation was prepared in the pHs 5 and 7. The antioxidant activities of the samples were measured by DPPH• and expressed in Trolox® equivalents (TE), and their photostability and in vitro sun protection factor (SPF) were analyzed by diffuse reflectance spectrophotometry. The anti-radical efficiencies observed in the formulations with grape extract were: (II) 590.12 ± 0.01 μmol TE g−1 at pH 5 and 424.51 ± 0.32 μmol TE g−1 at pH 7; (III) 550.88 ± 0.00 μmol TE g−1 at pH 5 and 429.66 ± 0.10 μmol TE g−1, at pH 7, demonstrating that the UV filters, butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl 4-aminobenzoic acid had no influence on this effect. The photoprotective efficacy and the photostability of formulation III containing the extract and UV filters at pH 5 suggested that a synergism between the active molecules provided an 81% increase in SPF. Additionally, this was the only sample that maintained a broad spectrum of protection after irradiation. These results confirmed that the grape pomace extract has multifunctional potential for cosmetic use, mainly in sunscreens, granting them superior performance.
Enterococcus faecalis is an important pathogen associated with endodontic diseases, and its elimination and control are of paramount importance, as it represents one of the major causes of failure in the treatment of endodontic disease. Twenty-five plant extracts obtained from Brazilian forests were found to be effective against planktonic E. faecalis and were subjected to two traditional antibacterial assays, the microdilution broth assay (MDBA) and the disk diffusion assay (DDA), using chlorhexidine (CHX) as a control. Seven out of 25 extracts showed significant antibacterial activity and were tested in a biofilm assay, and three of these extracts were subjected to chemical fractionation. Residues were tested for their antibacterial activity, and the first chemical findings were described based on thin layer chromatography (TLC). Extracts obtained from Ipomoea alba, Symphonia globulifera and Moronobea coccinea showed significant bactericidal activity in the MDBA. The same I. alba and S. globulifera extracts, as well as the extract obtained from Connarus ruber var. ruber, showed significant activity in the DDA. RH2O obtained from Psidium densicomum and Stryphnodendron pulcherrimum showed better antibacterial activity compared to the respective crude extracts and CHX. TLC analysis showed that phenolic compounds and triterpenes represent the first findings of chemical groups that may occur in all species. The results of the present study include the discovery of six active extracts against planktonic E. faecalis and support further testing via assays involving biofilm formation, as well as the determination of the compounds' chemical profiles, as their activity was significantly better than that observed for CHX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.