In this paper we present the temperature compensation of aluminum nitride (AlN) Lamb wave resonators for a future application to XOs and TCXOs for a frequency ranging from 100 MHz to 1000 MHz. The temperature coefficient of frequency (TCF) for the lowest symmetric Lamb wave mode S 0 for AlN plates with h/λ < 0.3 is found to be around -30 ppm/K. A zero TCF resonator is obtained by adding a compensating silicon dioxide layer. The low dispersion of the phase velocity for the S 0 -mode propagating in thin AlN plates reduces not only the fabrication tolerances towards thickness variations of the AlN layer, but also enables resonators operating over a wide frequency range, i.e. from 100 MHz to 1000 MHz, based on two absolute film thicknesses for AlN and SiO 2 achieving near zero TCF over the entire frequency range. The acoustic properties and different layer configurations of zero TCF Lamb wave devices are discussed in detail.
In this paper, the temperature compensation of AlN Lamb wave resonators using edge-type reflectors is theoretically studied and experimentally demonstrated. By adding a compensating layer of SiO2 with an appropriate thickness, a Lamb wave resonator based on a stack of AlN and SiO2 layers can achieve a zero first-order temperature coefficient of frequency (TCF). Using a composite membrane consisting of 1 microm AlN and 0.83 microm SiO2, a Lamb wave resonator operating at 711 MHz exhibits a first-order TCF of -0.31 ppm/degrees C and a second-order TCF of -22.3 ppb/degrees C(2) at room temperature. The temperature-dependent fractional frequency variation is less than 250 ppm over a wide temperature range from -55 degrees C to 125 degrees C. This temperature-compensated AlN Lamb wave resonator is promising for future applications including thermally stable oscillators, filters, and sensors.
In this letter, temperature compensation for aluminum nitride (AlN) Lamb wave resonators operating at high temperature is presented. By adding a compensating layer of silicon dioxide (SiO2), the turnover temperature can be designed for high temperature operation by varying the normalized AlN film thickness (hAlN/λ) and the normalized SiO2 film thickness (hSiO2/λ). With different designs of hAlN/λ and hSiO2/λ, the Lamb wave resonators were well temperature-compensated at 214 °C, 430 °C, and 542 °C, respectively. The experimental results demonstrate that the thermally compensated AlN Lamb wave resonators are promising for frequency control and sensing applications at high temperature.
This paper describes an evaluation scheme that prevents phase ambiguity of surface acoustic wave (SAW) delay-line sensors. Although it is well-known that phase evaluation yields accuracies of 150~1500 times higher than time-delay evaluation, the problem of phase ambiguity has prevented phase evaluation of sensors operating over a range larger than 2 pi. This paper addresses this unsolved problem with a complete strategy. Furthermore, the existence of an optimum choice of the relative reflector positions on the sensor is shown. The presented relations enable the design of maximum accuracy SAW delay-line sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.