The emerging nano biosystems are competent in diagnosis, drug delivery, and monitoring of therapeutic response. Both imaging and therapeutic functions can be achieved by using nanoplatforms. These nanoplatforms promise to revolutionize the medical management of many personalized illnesses. The well-developed surface chemistry of iron oxide (Fe3O4) makes it easy to charge them with pharmaceutics, promoting them as nanoplatforms for building up nanoparticle-based drug delivery systems. The strategy to design multifunctional Fe3O4 conjugates with bioactive molecules of plant origin to show enhanced activity is reported here. The conjugation reveals the magnetic Fe3O4 core nanoparticle surface readily link to hydroxyl sites of the Dextrin molecule, which further conjugate to conjugated with Curcumin and D-Limonene, which are powerful anti-cancer, anti-inflammatory, and antioxidant agents. The structural, morphological, optical, and magnetic properties were analyzed by X-ray diffraction, FT-Infrared, HR-Tunneling Electron Microscopy, and Vibrating Sample Magnetometer techniques. The potential drug loading was measured as Drug Entrapment Efficiency using UV-Vis spectroscopy. The antibacterial property was tested on the bacterium S. aureus and E. coli. Fe3O4-Dextrin nanoconjugates proved to be efficient for loading and stabilizing Curcumin and Limonene. Thus, multifunctional Fe3O4 conjugates are explored as exciting nano-drug carriers for targeted drug delivery.
Background Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences. Results Fe3O4 phytohybrids with Laxmitaru extract as the primary coating and loaded with Eugenol and Ylang-Ylang essential oils were successfully synthesized. The X-ray diffraction technique has revealed the high purity nanoparticle materials, as no additional impurity peaks were observed. Fourier transform infra-red spectra have confirmed the presence of a primary coating of Laxmitaru extract and a secondary layer of essential oil, as additional peaks and broadening are observed in drug-loaded Fe3O4 nanoparticles. Magnetic susceptibility values indicate the material's superparamagnetic nature. Transmission electron microscopy images have ensured that the particles were spherical, monodispersed, and in the range of 4.30 nm to 13.98 nm. Antimicrobial studies show inhibition zones on the microorganisms S. Aureus and E. Coli with enhanced activity. Drug entrapment efficiency studies revealed the encapsulation of drug molecules onto Fe3O4-Laxmitaru composite. Dynamic light scattering studies confirm the increase in hydrodynamic size, indicating the loading of essential oils and the decrease in polydispersity index ensures monodispersed nanoparticles. The antioxidant study showed the essential oils retained their antioxidant activity even after they were conjugated on Fe3O4-Lax composites. Conclusions Laxmitaru phytochemical-coated Fe3O4 nanoparticles were successfully conjugated with Eugenol and Ylang-Ylang essential oils. Our results provide a model therapeutic approach for the development of new alternative strategies for enhancing antimicrobial and antioxidant therapy, with potential advantages in the field of nanobiomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.