Nano ZnO was synthesised by green approach employing aqueous extract of Adulsa and Lemongrass leaves. XRD suggested hexagonal wutzite structure for these prepared ZnO. Synthesised nanoparticles efficiently catalysed Biginelli reaction.
The emerging nano biosystems are competent in diagnosis, drug delivery, and monitoring of therapeutic response. Both imaging and therapeutic functions can be achieved by using nanoplatforms. These nanoplatforms promise to revolutionize the medical management of many personalized illnesses. The well-developed surface chemistry of iron oxide (Fe3O4) makes it easy to charge them with pharmaceutics, promoting them as nanoplatforms for building up nanoparticle-based drug delivery systems. The strategy to design multifunctional Fe3O4 conjugates with bioactive molecules of plant origin to show enhanced activity is reported here. The conjugation reveals the magnetic Fe3O4 core nanoparticle surface readily link to hydroxyl sites of the Dextrin molecule, which further conjugate to conjugated with Curcumin and D-Limonene, which are powerful anti-cancer, anti-inflammatory, and antioxidant agents. The structural, morphological, optical, and magnetic properties were analyzed by X-ray diffraction, FT-Infrared, HR-Tunneling Electron Microscopy, and Vibrating Sample Magnetometer techniques. The potential drug loading was measured as Drug Entrapment Efficiency using UV-Vis spectroscopy. The antibacterial property was tested on the bacterium S. aureus and E. coli. Fe3O4-Dextrin nanoconjugates proved to be efficient for loading and stabilizing Curcumin and Limonene. Thus, multifunctional Fe3O4 conjugates are explored as exciting nano-drug carriers for targeted drug delivery.
Background Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences. Results Fe3O4 phytohybrids with Laxmitaru extract as the primary coating and loaded with Eugenol and Ylang-Ylang essential oils were successfully synthesized. The X-ray diffraction technique has revealed the high purity nanoparticle materials, as no additional impurity peaks were observed. Fourier transform infra-red spectra have confirmed the presence of a primary coating of Laxmitaru extract and a secondary layer of essential oil, as additional peaks and broadening are observed in drug-loaded Fe3O4 nanoparticles. Magnetic susceptibility values indicate the material's superparamagnetic nature. Transmission electron microscopy images have ensured that the particles were spherical, monodispersed, and in the range of 4.30 nm to 13.98 nm. Antimicrobial studies show inhibition zones on the microorganisms S. Aureus and E. Coli with enhanced activity. Drug entrapment efficiency studies revealed the encapsulation of drug molecules onto Fe3O4-Laxmitaru composite. Dynamic light scattering studies confirm the increase in hydrodynamic size, indicating the loading of essential oils and the decrease in polydispersity index ensures monodispersed nanoparticles. The antioxidant study showed the essential oils retained their antioxidant activity even after they were conjugated on Fe3O4-Lax composites. Conclusions Laxmitaru phytochemical-coated Fe3O4 nanoparticles were successfully conjugated with Eugenol and Ylang-Ylang essential oils. Our results provide a model therapeutic approach for the development of new alternative strategies for enhancing antimicrobial and antioxidant therapy, with potential advantages in the field of nanobiomedicine.
A simple, sensitive, and easy to use method for the determination of palladium content in palladium acetate was developed using homogeneous acid digestion of palladium acetate followed by atomic absorption spectrometry (AAS) analysis. Parameters affecting the extraction efficiency of palladium during digestion of palladium acetate were investigated and optimized. The palladium content was measured at 244.7 nm by atomic absorption (AA) spectrometers on PinAAcle™ 900 series with an air-acetylene flame. The linear calibration graph was observed in the range of 2.5-15 ppm with a limit of detection of 8.33 ppm and a correlation coefficient of 0.999970. For 5 replicate analyses of each palladium reference solution the relative standard deviation was within 2.00%.Analytical method validation for the method was carried out and obtained results were satisfactory.To verify, the accuracy parameter of the method validation, for the determination of Pd(II) from sample palladium acetate standard addition method was applied and satisfactory results were obtained. Optimization of analytical method variables during analytical method development is discussed.
Goa, a tourist destination known for its alarming scenic beauty has seen a consistently rising trend in hotel occupancy for star category hotels. On an average a luxury hotel would consume approximately 200,000 litres of water per day. The waste water generated from this consumption is basically 30% of black water (sewage) and 70% of grey water (bath water, laundry waste water, etc). A study was carried out to harness the potential of grey water before dumping into water bodies per se. A membrane based bio reactor (MBR) designed for chemical and biological treatment of this waste water includes mechanisms like coagulation, flocculation & separation of the water ludge. The water is then validated for its BOD & COD levels as per the government norms and then membrane filtered to remove total dissolved solids (TDS). This filtered water is then subjected to biological treatment whereas the sludge is used in landfills. EM technology uses commercially available culture of microorganisms, comprising of Lactobacillus, photosynthetic bacteria and yeast for biological treatment of the waste water to render it safe for human use. Monitoring and water quality analysis revealed that microbial treatment considerably reduced the BOD. This innovative technology allows the recycling of waste water which can be made use of for different purposes like gardening, cleaning floors & hotel properties, washing of cars & flushing. Moreover, it requires low foot print and involves easy installation and less maintenance. Recycling of grey water would in turn curtail consumption, thus cutting cost for purchase of water and ensuring safety of consumers. In addition to MBR & EM Technology being economically feasible, safe and user-friendly, its usage is highly recommended to maintain a stable water table and preserve the integrity of the hospitality industry in Goa. It is surely an initiative to minimize water crisis thus maintaining a sustainable ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.