In the context of 65nm logic technology where gate CD control budget requirements are below 5nm, it is mandatory to properly quantify the impact of the 2D effects on the electrical behavior of the transistor [1,2]. This study uses the following sequence to estimate the impact on transistor performance: 1)A lithographic simulation is performed after OPC (Optical Proximity Correction) of active and poly using a calibrated model at best conditions. Some extrapolation of this model can also be used to assess marginalities due to process window (focus, dose, mask errors, and overlay). In our case study, we mainly checked the poly to active misalignment effects.
2)Electrical behavior of the transistor (Ion, Ioff, Vt) is calculated based on a derivative spice model using the simulated image of the gate as an input. In most of the cases Ion analysis, rather than Vt or leakage, gives sufficient information for patterning optimization. We have demonstrated the benefit of this approach with two different examples:-design rule trade-off : we estimated the impact with and without misalignment of critical rules like poly corner to active distance, active corner to poly distance or minimum space between small transistor and big transistor. -Library standard cell debugging: we applied this methodology to the most critical one hundred transistors of our standard cell libraries and calculate Ion behavior with and without misalignment between active and poly. We compared two scanner illumination modes and two OPC versions based on the behavior of the one hundred transistors. We were able to see the benefits of one illumination, and also the improvement in the OPC maturity.
In the last 2 years, the semiconductor industry has recognized the critical importance of verification for optical proximity correction (OPC) and reticle/resolution enhancement technology (RET). Consequently, RET verification usage has increased and improved dramatically. These changes are due to the arrival of new verification tools, new companies, new requirements and new awareness by product groups about the necessity of RET verification. Currently, as the 65nm device generation comes into full production and the 45nm generation starts full development, companies now have the tools and experience (i.e., long lists of previous errors to avoid) needed to perform a detailed analysis of what is required for 45nm and 65nm RET verification. In previous work [1] we performed a theoretical analysis of OPC & RET verification requirements for the 65nm and 45nm device generations and drew conclusions for the ideal verification strategy. In this paper, we extend the previous work to include actual observed verification issues and experimental results. We analyze the historical experimental issues with regard to cause, impact and optimum verification detection strategy. The results of this experimental analysis are compared to the theoretical results, with differences and agreement noted. Finally, we use theoretical and experimental results to propose an optimized RET verification strategy to meet the user requirements of 45nm development and the differing requirements of 65nm volume production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.