This article proposes a new model of power supply for mobile low power machines applications, between 10 W and 30 W, such as radio-controlled (RC) electric cars. This power supply is based on general hydrogen from residual aluminum and water with NaOH, so it is proposed energy valorization of aluminum waste. In the present research, a theoretical model allows us to predict the requested aluminum surface and the required flow of hydrogen has been developed, also considering, in addition to the geometry and purity of the material, two key variables as the temperature and the molarity of the alkaline solution used in the hydrogen production process. Focusing on hydrogen production, isopropyl alcohol plays a key role in the reactor’s fuel cell vehicle as it filters out NaOH particles and maintains a constant flow of hydrogen for the operation of the machine, keeping the reactor temperature controlled. Finally, a comparison of the theoretical and experimental data has been used to validate the developed model using aluminum sheets from ring cans to generate hydrogen, which will be used as a source of hydrogen in a power fuel cell of an RC car. Finally, the manuscript shows the parts of the vehicle’s powertrain, its behavior, and mode of operation.
In this article, it is proposed to use aluminum breakage scraps to obtain green hydrogen through the aluminum–water reaction with caustic soda as a catalyst with experimental research. From this exothermic reaction, both hydrogen and the heat generated can be used. Due to the low price of aluminum chips, this allows us to produce green hydrogen below the current price that is obtained using renewable energy sources and electrolyzers. We have also developed a process that is sustainable since it is obtained as alumina and caustic soda waste that can be reused. This alumina obtained, once filtered, has high purity which allows us to produce high-quality primary aluminum without the need to use bauxite and the production of red sludge is also reduced. A comparative study-analysis was carried out between two of the forms in which the most common aluminum is presented in industry to analyze which one performs better by studying key factors such as the hydrogen produced, and the waste generated during the process. Finally, the mathematical model has been defined to be able to control the flow based on different key parameters such as temperature, molarity, and geometry. Undoubtedly, the study that we present represents a milestone for the recovery of metallic aluminum waste and may be of great interest to industries that use aluminum in their processes, such as recuperators, as well as the vehicle and aerospace industries.
This article proposes using recycled aluminum, generating hydrogen in situ at low pressure, to power a 250 W electric bicycle with a fuel cell (FC), to increase the average speed and autonomy compared to a conventional electric bicycle with a battery. To generate hydrogen, the aluminum–water reaction with a 6 M NaOH solution is used as a catalyst. This article details the parts of the generation system, the electronic configuration used, the aluminum- and reagent-loading procedure and the by-products obtained, as well as the results of the operation without pedaling, with a resistance equivalent to a flat terrain and at maximum power of the accelerator for one and two loads of about 100 g of aluminum each. This allows us to observe different hybrid strategies, with a low-capacity battery in each case. The goal is to demonstrate that it is possible to store energy in a long-lasting, transportable, low-pressure, and sustainable manner, using recycled-aluminum test tubes, and to apply this to mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.