Sucrose is the most cariogenic dietary carbohydrate and starch is considered non-cariogenic for enamel and moderately cariogenic for dentine. However, the cariogenicity of the combination of starch and sucrose remains unclear. The aim of this study was to evaluate the effect of this combination on Streptococcus mutans biofilm composition and enamel and dentine demineralization. Biofilms of S. mutans UA159 were grown on saliva-coated enamel and dentine slabs in culture medium containing 10% saliva. They were exposed (8 times/day) to one of the following treatments: 0.9% NaCl (negative control), 1% starch, 10% sucrose, or 1% starch and 10% sucrose (starch + sucrose). To simulate the effect of human salivary amylase on the starch metabolization, the biofilms were pretreated with saliva before each treatment and saliva was also added to the culture medium. Acidogenicity of the biofilm was estimated by evaluating (2 times/day) the culture medium pH. After 4 (dentine) or 5 (enamel) days of growth, biofilms (n = 9) were individually collected, and the biomass, viable microorganism count, and polysaccharide content were quantified. Dentine and enamel demineralization was assessed by determining the percentage of surface hardness loss. Biofilms exposed to starch + sucrose were more acidogenic and caused higher demineralization (p < 0.0001) on either enamel or dentine than those exposed to each carbohydrate alone. The findings suggest that starch increases the cariogenic potential of sucrose.
O objetivo do estudo foi avaliar a aceitação da utilização de metodologias ativas de ensino-aprendizagem nos estágios no SUS (Sistema Único de Saúde) por discentes da graduação e pós-graduação em Odontologia. Foi realizada uma pesquisa de opinião, com análise de dados de forma quanti-qualitativa. Para tanto, 30 estudantes de graduação e 10 de pós-graduação responderam a um questionário semiestruturado contendo perguntas relativas às suas experiências com esta metodologia. Os dados revelaram que 67% dos estudantes de graduação e 70% da pós-graduação nunca haviam entrado em contato com metodologias ativas de ensino-aprendizagem. Houve satisfação com a metodologia adotada, aprovada pela totalidade dos alunos. As metodologias ativas mostraram-se como alternativas didático–pedagógicas viáveis, com aceitação entre os estudantes de graduação e pós-graduação, estando em consonância com as Diretrizes Curriculares Nacionais para os Cursos de Odontologia no Brasil.
Despite their demonstrated biocompatibility and osteogenic properties, oyster shells have been reported as a potential alternative to other commonly used materials for bone substitution. This study evaluated whether an experimental bone substitute (EBS) made from a typical oyster shell of Northeastern Brazil (Crassostrea rhizophora) has effects on bone development using an animal model. Oysters were collected from a biologically assisted vivarium, and their inner layer was used for preparing an EBS. Chemical and surface characterization of EBS was performed using Individually Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Scanning Electron Microscope (SEM), respectively. Seventy-two rats were randomly assigned to groups according to the treatment of bone defects created in the submandibular area: Negative Control (-C), Positive Control (+C; Bio-Oss®) and EBS. Euthanasia occurred at 7, 21, 42 and 56 days postoperatively. The bone pieces were stained with hematoxylin and eosin (H&E). The formation of bone tissue was evaluated histologically and histomorphometrically. Data were analyzed through the Kruskal-Wallis test and ANOVA considering a significant level of 5%. The main element found in EBS was calcium (71.68%), and it presented heterogeneity in the particle size and a porosity aspect at SEM analysis. Histological results revealed the absence of inflammatory cells in all groups, being that EBS presented the most accelerated process of bone formation with a statistically significant difference between this group and the +C and -C groups in the 21-day time-point (p < 0.05). After 21 days, the bone formation process was similar between all groups (p > 0.05), showing an immature lamellar bone pattern after 56 days of experimentation (p > 0.05). Within the limitations of this study, it was possible to conclude that EBS presented good biocompatibility and promoted fast stimulation for bone-forming cells in an animal model.
(año 2011), se elaboró una propuesta de currículo inicial, basado en los dominios propuestos por la Unión Europea (Schulte AG y cols). Durante el año 2016, dicha propuesta fue analizada mediante diálogos digitales y grupos de trabajo, con la participación del 96% de las Escuelas de Odontología existentes en el país, que concluyeron en un documento intermedio. Este documento fue analizado, discutido y perfeccionado durante el Taller para el Desarrollo de un Currículo de Competencias Mínimas en Cariología para las Escuelas de Odontología Chilenas (22/Mayo/
Calcium fluoride-like materials ("CaF 2 ") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF 2 " formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF 2 " formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.