In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.
Articles you may be interested inInvestigation of extra traps measured by charge pumping technique in high voltage zone in p-channel metaloxide-semiconductor field-effect transistors with HfO2/metal gate stacks Appl. Phys. Lett. 102, 012106 (2013); 10.1063/1.4773914 Investigation of an anomalous hump in gate current after negative-bias temperature-instability in HfO2/metal gate p-channel metal-oxide-semiconductor field-effect transistors Appl. Phys. Lett. 102, 012103 (2013); 10.1063/1.4773479 Analysis of anomalous traps measured by charge pumping technique in HfO2/metal gate n-channel metal-oxidesemiconductor field-effect transistors Characterization of fast charge trapping in bias temperature instability in metal-oxide-semiconductor field effect transistor with high dielectric constant Appl. Phys. Lett. 96, 142110 (2010); 10.1063/1.3384999 Anomalous negative bias temperature instability behavior in p -channel metal-oxide-semiconductor field-effect transistors with Hf Si O N Si O 2 gate stackThis letter investigates a hump in gate current after dynamic negative bias stress (NBS) in Hf x Zr 1-x O 2 /metal gate p-channel metal-oxide-semiconductor field-effect transistors. By measuring gate current under initial through body floating and source/drain floating, it shows that hole current flows from source/drain. The fitting of gate current-gate voltage characteristic curve demonstrates that Frenkel-Poole mechanism dominates the conduction. Next, by fitting the gate current after dynamic NBS, in the order of Frenkel-Poole then tunneling, the Frenkel-Poole mechanism can be confirmed. These phenomena can be attributed to hole trapping in high-k bulk and the electric field formula E high-k e high-k ¼ Q þ E sio2 e sio2 . V C 2012 American Institute of Physics. [http://dx.
This Letter investigates a hump in gate current after negative-bias temperature-instability (NBTI) in HfO2/metal gate p-channel metal-oxide-semiconductor field-effect transistors. Measuring gate current at initial through body floating and source/drain floating shows that hole current flows from source/drain. The fitting of gate current (Ig)-gate voltage (Vg) characteristic curves demonstrates that the Frenkel-Poole mechanism dominates the conduction. Next, by fitting the gate current after NBTI, in the order of Frenkel-Poole then tunneling, the Frenkel-Poole mechanism can be confirmed. These phenomena can be attributed to hole trapping in high-k bulk and the electric field formula Ehigh-k εhigh-k = Q + Esio2εsio2.
This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.
This letter investigates abnormal negative threshold voltage shifts under positive bias stress in input/output (I/O) TiN/HfO2 n-channel metal-oxide-semiconductor field-effect transistors using fast I-V measurement. This phenomenon is attributed to a reversible charge/discharge effect in pre-existing bulk traps. Moreover, in standard performance devices, threshold-voltage (Vt) shifts positively during fast I-V double sweep measurement. However, in I/O devices, Vt shifts negatively since electrons escape from bulk traps to metal gate rather than channel electrons injecting to bulk traps. Consequently, decreasing pre-existing bulk traps in I/O devices, which can be achieved by adopting HfxZr1−xO2 as gate oxide, can reduce the charge/discharge effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.