One could easily argue that the most commonly studied stimulus set in experimental psychology involves English words. The study of the memory and reading of words has been central to research since Cattell (1886). Words are well-described units that provide the link between perception and meaning, and so have been critical to developments in computational modeling (e.g., McClelland & Rumelhart, 1981), neuroimaging (e.g., Petersen, Fox, Posner, Mintun, & Raichle, 1989, and conceptions of attention and automaticity (e.g., Neely, 1977;Stroop, 1935), among many other research areas.Given the importance of words as a stimulus set, one might assume that there are relatively straightforward ways to study lexical processing, and that there is a wellconstrained set of findings to which one can appeal in building models of word processing. Although there has been considerable progress in understanding how people process words, there are some clear gaps in the available literature. This paper describes the English Lexicon Project (ELP), which provides a behavioral database for over 40,000 words and nonwords that will help fill some of these gaps. The present description will focus on visual word recognition, although, as described below, the current database has relevance for other aspects of word processing, such as memory and speech production. Before describing the ELP, we will briefly describe the behavioral measures in the database, the limitations in our current knowledge, and how this database will help address these limitations. LEXICAL DECISIONS AND NAMING AS THE BEHAVIORAL TARGETSAlthough there are multiple ways to measure lexical processing (e.g., eye-fixation data, probability of iden- The English Lexicon Project is a multiuniversity effort to provide a standardized behavioral and descriptive data set for 40,481 words and 40,481 nonwords. It is available via the Internet at elexicon.wustl.edu. Data from 816 participants across six universities were collected in a lexical decision task (approximately 3400 responses per participant), and data from 444 participants were collected in a speeded naming task (approximately 2500 responses per participant). The present paper describes the motivation for this project, the methods used to collect the data, and the search engine that affords access to the behavioral measures and descriptive lexical statistics for these stimuli.
In a recent meta-analysis, Lucas (2000) concluded that there is strong evidence of an overall pure semantic priming effect but no evidence of priming based purely on association. In the present review, I critically examine the individual studies claiming evidence of featural and associative relations in semantic memory. The most important conclusion is that automatic priming appears to be due to both association strength and feature overlap. Mediated associates provide the strongest evidence of automatic associative priming, whereas functional associates, synonyms, and antonyms instead support priming based on feature overlap. In contrast, automatic priming does not occur for category coordinates or perceptually similar items, at least when presented in the visual modality. The status of other relations, such as collocates, episodic relatives, and script relations, is unclear and requires further experimentation. Implications for current models of semantic representation and priming are discussed.
Hypothesized top-down and bottom-up mechanisms of control within conflict-rich environments were examined by presenting participants with a Stroop task in which specific words were usually presented in either congruent or incongruent colors. Incongruent colors were either frequently (high contingency) or infrequently (low contingency) paired with the word. These items were embedded within lists consisting of either 100% congruent or 100% incongruent filler items to create mostly congruent or mostly incongruent lists. Results indicated a significant item-specific congruency effect, which was largest for high contingency responses and within mostly congruent lists. In addition, a significant listwide congruency effect was obtained, and this interacted with working memory capacity (WMC). There were larger listwide congruency effects for low WMC individuals. Finally, the pattern of Stroop interference across lists for low WMC individuals was dependent upon the congruency of the preceding trial. These results support multiple forms of cognitive control, as well as contingency learning, as mechanisms underlying proportion congruence effects in Stroop and other conflict tasks. These findings are interpreted within Braver, Gray, and Burgess's (2007) dual mechanisms of control theory.
Prior studies have shown that cognitive control is implemented at the list and context levels in the color-word Stroop task. At first blush, the finding that Stroop interference is reduced for mostly incongruent items as compared with mostly congruent items (i.e., the item-specific proportion congruence [ISPC] effect) appears to provide evidence for yet a third level of control, which modulates word reading at the item level. However, evidence to date favors the view that ISPC effects reflect the rapid prediction of high-contingency responses and not item-specific control. In Experiment 1, we first show that an ISPC effect is obtained when the relevant dimension (i.e., color) signals proportion congruency, a problematic pattern for theories based on differential response contingencies. In Experiment 2, we replicate and extend this pattern by showing that item-specific control settings transfer to new stimuli, ruling out alternative frequency-based accounts. In Experiment 3, we revert to the traditional design in which the irrelevant dimension (i.e., word) signals proportion congruency. Evidence for item-specific control, including transfer of the ISPC effect to new stimuli, is apparent when 4-item sets are employed but not when 2-item sets are employed. We attribute this pattern to the absence of high-contingency responses on incongruent trials in the 4-item set. These novel findings provide converging evidence for reactive control of color-word Stroop interference at the item level, reveal theoretically important factors that modulate reliance on item-specific control versus contingency learning, and suggest an update to the item-specific control account (Bugg, Jacoby, & Chanani, 2011).
In 2 experiments, participants completed both an attentional control battery (OSPAN, antisaccade, and Stroop tasks) and a modified semantic priming task. The priming task measured relatedness proportion (RP) effects within subjects, with the color of the prime indicating the probability that the to-be-named target would be related. In Experiment 2, participants were cued before each trial with the probability of a related target. Stimulus onset asynchronies traditionally thought to tap automatic processing (267 ms) versus controlled processing (1,240 ms) were used. Across experiments, principal component analysis on the battery revealed a general attentional control component. Moreover, the RP effect increased linearly with attentional control in both experiments. It is concluded that RP effects produced in this paradigm depend purely upon the effortful process of expectancy generation, which renders them sensitive to individual differences in attentional control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.