ABSTRAKUntuk mengetahui kondisi seseorang menderita diabetes harus dengan melakukan beberapa tes pada labolatorium, US National Institute of Diabetes telah melakukan uji untuk penyakit Diabetes sesuai dengan kriteria Organisasi Kesehatan Dunia yang dilakukan pada sejumlah perempuan yang berusia 21 tahun, dari warisan Pima India dan tinggal di dekat Phoenix, Arizona sebanyak 768 objek. Jumlah data Diabetes Indian Pima yaitu sebanyak 768 data. Untuk percobaan ini, data tersebut dibagi menjadi dua yaitu 80% sebagai data training dan 20% sebagai data testing. Dengan menggunakan jaringan saraf tiruan Backpropagation, data tersebut dikembangkan untuk diagnosa penyakit Diabetes. Hal ini diharapkan dapat digunakan untuk memprediksi potensi seseorang terserang Diabetes. Klasifikasi jaringan saraf tiruan Backpropagation ini dioptimasi menggunakan metode Nguyen Widrow agar rule yang dihasilkan lebih signifikan atau rule yang dihasilkan dapat meningkatkan akurasi. Pengujian menggunakan data testing Diabetes dan inisialisasi Nguyen Widrow, maka dihasilkan tingkat akurasi sebesar 100%. Sedangkan jika menggunakan inisialisasi bobot random, maka dihasilkan tingkat akurasi sebesar 50%.Kata Kunci: Backpropagation ,Diabetes, Jaringan Saraf Tiruan, Nguyen Widrow.ABSTRACTTo determine the condition of a person suffering from diabetes need to do some tests in laboratories, the US National Institute of Diabetes has been test for Diabetes in accordance with the criteria of the World Health Organization conducted a number of women aged 21 years, from the legacy of Pima Indians and stay near Phoenix , Arizona as many as 768 objects. The amount of data Pima Indian Diabetes as many as 768 data. For this experiment, the data is divided into two: 80% as training data and 20% as a data testing. By using a neural network Backpropagation, the data developed for the diagnosis of Diabetes. It is expected-kan can be used to predict the potential of a person develops diabetes. Classification neural network Backpropagation is optimized using methods Nguyen Widrow that produced more significant rule or rule produced can improve accuracy. Diabetes testing using testing and initialization of data Nguyen Widrow, then the resulting accuracy rate of 100%. Whereas if you use random weight initialization, then produced a 50% accuracy rate.Keywords: Backpropagation ,Diabetes, Neural Network, Nguyen Widrow
Image Segmentation is a process to separate between foreground and background. Segmentation process in low contrast image such as dental panoramic radiograph image is not easily determined. Image segmentation accuracy determines the success or failure of the final analysis process. The process of segmentation can occur ambiguity. This ambiguity is due to an ambiguous area if it is not selected as a region so it may have occurred cluster errors. To solve this ambiguity, we proposed a new region merging by iterated region merging process on dental panoramic radiograph image. The proposed method starts from the user marking and works iteratively to label the surrounding regions. In each iteration, the minimal gray-levels value is merged so the unknown regions significantly reduced. This experiment shows that the proposed method is effective with an average of ME and RAE of 0.04% and 0.06%.
Pengelompokan dokumen berita secara manual sangat tergantung pada kemampuan dan ketelitian manusia sehingga dapat menyebabkan terjadinya kesalahan dalam pengelompokan dokumen tersebut. Oleh karena itu, perlu dilakukan pengelompokan dokumen berita secara otomatis. Dalam pengelompokan tersebut diperlukan sebuah metode pembobotan yang meliputi TF.IDF.ICF. Pada paper ini kami mengusulkan sebuah algoritma pembobotan yang baru yaitu TF.IDF.ICF.ITF agar dapat mengelompokkan dokumen secara otomatis melalui pola data statistik sehingga kesalahan dalam pengelompokan dokumen secara manual dapat berkurang dan lebih efisien. K-Means++ merupakan algoritma untuk klasifikasi dan merupakan pengembangan dari algoritma K-Means pada tahap inisialisasi pusat cluster awal yang mudah untuk diimplementasikan serta memiliki hasil yang lebih stabil. K-Means++ mengelompokan dokumen pada tahap pembobotan kata Inverse Class Frequency (ICF). ICF dikembangakan dari penggunaan pembobotan berbasis kelas untuk term weighting term pada dokumen. Term yang sering muncul pada banyak kelas akan memiliki nilai yang kecil namun informatif. Pembobotan yang diusulkan dihitung . Pengujian dilakukan dengan menggunakan query tertentu pada beberapa jumlah fitur terbaik, hasil yang diperoleh dengan metode TF.IDF.ICF.ITF memberikan hasil yang kurang begitu optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.