RESUMEN • El desarrollo del razonamiento algebraico elemental desde los primeros niveles educativos es un objetivo propuesto en diversas investigaciones y orientaciones curriculares. En consecuencia, es importante que el profesor de educación primaria conozca las características del razonamiento algebraico y sea capaz de seleccionar y elaborar tareas matemáticas adecuadas que permitan la progresiva introducción del razonamiento algebraico en la escuela primaria. En este trabajo, presentamos un modelo en el que se diferencian tres niveles de razonamiento algebraico elemental que puede utilizarse para reconocer características algebraicas en la resolución de tareas matemáticas. Presentamos el modelo junto con ejemplos de actividades matemáticas, clasificadas según los distintos niveles de algebrización. Estas actividades pueden ser usadas en la formación de profesores a fin de capacitarlos para el desarrollo del sentido algebraico en sus alumnos. PALABRAS CLAVE: álgebra elemental; niveles de algebrización; tareas matemáticas; formación de profesores; sentido algebraico. ABSTRACT • Developing elementary algebraic thinking since the earliest levels of education is a goal proposed in different research works and curricular guidelines. Consequently, primary school teachers should know the characteristics of algebraic reasoning and be able to select and develop appropriate mathematical tasks that serve to gradually introduce algebraic reasoning in primary school. In this paper we present a model that distinguish three levels of elementary algebraic thinking and is useful in analyzing the algebraic features in solving mathematical tasks. We describe this model with examples of mathematical activities, classified according to the different levels of algebraization. These activities can be used in the education of teachers to prepare them to develop their students' algebraic sense.
En el marco del enfoque ontosemiótico del conocimiento y la instrucción matemáticos se ha propuesto una caracterización del razonamiento algebraico en Educación Primaria basada en la distinción de tres niveles de algebrización. Tales niveles se definen teniendo en cuenta los tipos de representaciones usadas, los procesos de generalización implicados y el cálculo analítico que se pone en juego en la actividad matemática correspondiente. En este trabajo ampliamos el modelo anterior mediante la inclusión de otros tres niveles más avanzados de razonamiento algebraico que permiten analizar la actividad matemática en los niveles de Educación Secundaria. Estos niveles están basados en la consideración de 1) el uso y tratamiento de parámetros para representar familias de ecuaciones y funciones; 2) estudio de las estructuras algebraicas en sí mismas, sus definiciones y propiedades. Asimismo, se analizan las concordancias y complementariedades de este modelo con las tres etapas del proceso de algebrización propuestas en el marco de la teoría antropológica de lo didáctico.
La promoción del pensamiento algebraico en alumnos de primaria requiere implementar acciones formativas específicas para los profesores, lo que a su vez implica elaborar instrumentos de evaluación del estado de sus conocimientos didáctico - matemáticos sobre el tema. En este trabajo presentamos resultados del estudio realizado para la construcción de un cuestionario de evaluación de los conocimientos didáctico - matemáticos de estudiantes de magisterio sobre razonamiento algebraico elemental. Describimos las categorías de conocimientos algebraicos tenidas en cuenta (estructuras, funciones y modelización) y las categorías de conocimientos didácticos (facetas epistémica, cognitiva, instruccional y ecológica). Así mismo se describen y analizan las tareas incluidas en el cuestionario informando de la validez de contenido del mismo.
ResumenLa introducción del razonamiento algebraico en educación primaria es un tema de interés para la investigación e innovación curricular en didáctica de las matemáticas, y presupone una visión ampliada de la naturaleza del álgebra escolar. En este trabajo proponemos una manera de concebir el razonamiento algebraico, basada en los tipos de objetos y procesos matemáticos introducidos en el enfoque ontosemiótico del conocimiento matemático. En síntesis, la consideración de una práctica matemática como algebraica se basará en la intervención de procesos de generalización y simbolización, junto con otros objetos usualmente considerados como algebraicos, tales como relaciones binarias, operaciones,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.