To reduce transmission of the coronavirus, the Brazilian government adopted containment measures to control the virus’ spread, including limitations to the practice of physical activity. It was aimed to analyze the effects of COVID-19 quarantine on physical activity levels, energy expenditure, quality of life, and level of stress in a sample of the Brazilian population. The sample included 426 participants (7 to 80 years). The International Physical Activity Questionnaire, Short form survey-36 (SF-36), and Stress Perception Scale, were used to assess the level of physical activity, quality of life and stress, respectively. The anthropometric data was used to the assessment of body mass index and basal metabolic rate. Body weight increased significantly in all sample (p < 0.05). During the pandemic, 84% of the sample indicated a low level of physical activity. Furthermore, weekly energy expenditure decreased significantly in all age groups during the pandemic (children p < 0.0001; adolescents: p < 0.0001; adults p < 0.001, and elderly p < 0.0001). All aspects of quality of life, significantly reduced in both sexes in all age groups (p < 0.05). With the exception of children, stress levels increased significantly during the pandemic (adolescents: male: p = 0.003, female: p < 0.05; adults: male: p = 0.003, female: p = 0.01, and elderly: male: p = 0.02, female: p = 0.03). Findings from the present study suggests that COVID-19 social isolation has negatively affected Brazilian’ physical activity and quality of life.
Strength exercise is a strategy applied in sports and physical training processes. It may induce skeletal muscle hypertrophy. The hypertrophy is dependent on the eccentric muscle actions and on the inflammatory response. Here, we evaluate the physiological, immunological, and inflammatory responses induced by a session of strength training with a focus on predominance of the eccentric muscle actions. Twenty volunteers were separated into two groups: the untrained group (UTG) and the trained group (TG). Both groups hold 4 sets of leg press, knee extensor, and leg curl at 65% of personal one-repetition maximum (1RM), 90 s of recovery, and 2″conc/3″eccen of duration of execution in each repetition. Blood samples were collected immediately before and after, 2 hours after, and 24 h after the end of the exercise session. The single session of strength training elevated the heart rate (HR), rating of perceived exertion (RPE), visual analog scale (VAS), and lactate blood level in UTG and TG. Creatine kinase (CK) levels were higher at 2 and 24 h after the end of the exercise in UTG and, in TG, only at 24 h. The number of white blood cells (WBC) and neutrophils increased in UTG and TG, post and 2 h after exercise. Lymphocytes increased postexercise but reduced 2 h after exercise in both groups, while the number of monocytes increased only immediately after the exercise session in UTG and TG. The strength training session elevated the levels of apelin and fatty acid-binding proteins-3 (FABP3) in both groups and brain-derived neurotrophic factor (BDNF) in TG. The single exercise session was capable of inducing elevated HR, RPE, lactate level, and CK levels. This protocol changed the count/total number of circulating immune cells in both groups (UTG and TG) and also increased the level of plasmatic apelin, BDNF, and FLTS1 only in TG and FABP3 myokines in both groups.
The aim of the present study was to analyze the effect of creatine (Cr) supplementation on peak torque (PT) and fatigue rate in Paralympic weightlifting athletes. Eight Paralympic powerlifting athletes participated in the study, with 25.40 ± 3.30 years and 70.30 ± 12.15 kg. The measurements of muscle strength, fatigue index (FI), peak torque (PT), force (kgf), force (N), rate of force development (RFD), and time to maximum isometric force (time) were determined by a Musclelab load cell. The study was performed in a single-blind manner, with subjects conducting the experiments first with placebo supplementation and then, following a 7-day washout period, beginning the same protocol with creatine supplementation for 7 days. This sequence was chosen because of the lengthy washout of creatine. Regarding the comparison between conditions, Cr supplementation did not show effects on the variables of muscle force, peak torque, RFD, and time to maximum isometric force (p > 0.05). However, when comparing the results of the moments with the use of Cr and placebo, a difference was observed for the FI after seven days (U3: 1.12; 95% CI: (0.03, 2.27); p = 0.02); therefore, the FI was higher for placebo. Creatine supplementation has a positive effect on the performance of Paralympic powerlifting athletes, reducing fatigue index, and keeping the force levels as well as PT.
Background: Recovery from training is vital as it ensures training and performance to continue at high intensities and longer durations to stimulate the body and cause further adaptations. Objective: To evaluate different methods of post-workout recovery in Paralympic powerlifting athletes. Methods: Twelve male athletes participated (25.4 ± 3.3 years; 70.3 ± 12.1 kg). The presence of muscle edema, pain threshold, plasma cytokines, and performance measurement were evaluated five times. The recovery methods used in this study were passive recovery (PR), dry needling (DN), and cold-water immersion (CWI). Results: The data analysis showed that the maximal force decreased compared to the pretest value at 15 min and 2 h. The results also revealed that CWI and DN increased Interleukin 2 (IL-2) levels from 24 to 48 h more than that from 2 h to 24 h. After DN, muscle thickness did not increase significantly in any of the muscles, and after 2 h, muscle thickness decreased significantly again in the major pectoralis muscle. After CWI, pain pressure stabilized after 15 min and increased significantly again after 2 h for acromial pectoralis. Conclusion: The strength training sessions generate several changes in metabolism and different recovery methods contribute differently to maintain homeostasis in Paralympic powerlifting athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.