The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 x 16 Gd(2)SiO(5) (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 +/- 1.0, 15.8 +/- 0.6, 17.7 +/- 1.2, and 17.3 +/- 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.
jPET-RD is designed to achieve high sensitivity as well as high spatial resolution by the use of four-layer depth of interaction (DOI) information of the detector. We have previously proposed the DOI encoding method that enables four layers DOI identification using only single kind crystal elements. The basic idea was tested by using Gd 2 SiO 5 , and the first prototype detector was developed using Lu 2(1-x) Y 2x SiO 5 (LYSO). In this work, we prepared a pair of jPET-RD prototype detectors composed of four layers of a 32 (transaxial) × 8 (axial) LYSO (Lu: 98%, Y: 2%) crystal block and a 256-channel flat panel position sensitive photomultiplier tube (256ch FP-PMT). The size of each crystal element is 1.46 mm × 1.46 mm × 4.5 mm. The crystal block (46.5 mm × 11.6 mm × 18.0 mm) is placed on the central area of a 256ch FP-PMT (49 mm × 49 mm useful area) and coupled with silicone rubber.First, we evaluated performance of the prototype DOI detector by uniform gamma ray irradiation. Then response functions of the prototype DOI detector were measured with collimated single gamma rays and finally coincidence responses are estimated with a pair of prototype DOI detectors in the experimental setup which simulates jPET-RD system. In the performance evaluation, the energy resolution of all events was 14.7% and the time resolution was found to be 0.66 ns. The response functions were 1.56 mm FWHM and 4.51 mm FWHM in average in transaxial and depth direction, respectively. The FWHMs of coincidence responses were 5.4 mm (non-DOI) and 3.7 mm (averaged DOI). It is confirmed that the spatial resolution is improved by using DOI information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.