The development of the nanoelectronics semiconductor devices leads to the shrinking of transistors channel into nanometer dimension. However, there are obstacles that appear with downscaling of the transistors primarily various short-channel effects. Graphene nanoribbon field-effect transistor (GNRFET) is an emerging technology that can potentially solve the issues of the conventional planar MOSFET imposed by quantum mechanical (QM) effects. GNRFET can also be used as static random-access memory (SRAM) circuit design due to its remarkable electronic properties. For high-speed operation, SRAM cells are more reliable and faster to be effectively utilized as memory cache. The transistor sizing constraint affects conventional 6T SRAM in a trade-off in access and write stability. This paper investigates on the stability performance in retention, access, and write mode of 15 nm GNRFET-based 6T and 8T SRAM cells with that of 16 nm FinFET and 16 nm MOSFET. The design and simulation of the SRAM model are simulated in synopsys HSPICE. GNRFET, FinFET, and MOSFET 8T SRAM cells give better performance in static noise margin (SNM) and power consumption than 6T SRAM cells. The simulation results reveal that the GNRFET, FinFET, and MOSFET-based 8T SRAM cells improved access static noise margin considerably by 58.1%, 28%, and 20.5%, respectively, as well as average power consumption significantly by 97.27%, 99.05%, and 83.3%, respectively, to the GNRFET, FinFET, and MOSFET-based 6T SRAM design.
In this study, the Multi-Walled Carbon Nanotube (MWCNT) and polydimethylsiloxane (PDMS) were prepared by using simple solution mixing method. However, the MWCNT have an issue to achieve stable polymer composite because the nanotubes can easily agglomerate and causes bundling when dispersed in polymer. Thus, the MWCNT was dispersed in toluene using mechanical stirring and sonication process. As a result, sonication process shows excellent dispersion of MWCNT with toluene compared to mechanical stirring method. To prepare conductive polymer composite, MWCNT with 2, 4, 6, 8, and 10 wt% concentrations were used. The dispersion processes of MWCNT in PDMS were characterized using Raman Spectroscopy. The intensity of D-band and G-band, ID/IG band decreases from 1.20 to 1.10 as the MWCNT content (6 wt% to 10 wt%) increases. This indicates less MWCNT defect occurred during dispersion process. Besides, the electrical conductivity of MWCNT/PDMS composite was investigated by using two point probe method. The conductivity of fabricated MWCNT/PDMS composite is in the range of 109 to 106 S/cm and a low percolation threshold is achieved at 4 wt% of MWCNT concentration in PDMS. Extension of this study is needed to improve the electrical conductivity of MWCNT/PDMS composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.