BackgroundSurgical site infections (SSIs) caused by biofilm-forming methicillin-resistant Staphylococcus pseudintermedius (MRSP) have emerged as the most common hospital-acquired infections in companion animals. No methods currently exist for the therapeutic remediation of SSIs caused by MRSP in biofilms. Clarithromycin (CLA) has been shown to prevent biofilm formation by Staphylococcus aureus. This study aims to assess the in vitro activity of CLA in eradicating MRSP biofilm formation on various materials.ResultsQuantitative assay results (P = 0.5126) suggest that CLA does not eradicate MRSP biofilm formation on polystyrene after 4 – 24 h growth periods. Scanning electron micrographs confirmed that CLA did not eradicate MRSP biofilm formed on orthopaedic implants.ConclusionsBy determining the in vitro characteristics and activities of MRSP isolates alone and against antibiotics, in vitro models of biofilm related infections can be made. In vitro data suggests that CLA does not effectively eradicate S. pseudintermedius biofilms in therapeutic doses.
The influence of fosfomycin on methicillinresistant Staphylococcus pseudintermedius (MRSP) as the target cell was studied by atomic force microscopy (AFM). Nanoscale images of the effects of the antibiotic fosfomycin on this gram-positive bacterium's cell were obtained in situ without fixing agents. Our study has demonstrated substantial morphological and topographical differences between the control and fosfomycin-treated MRSP cells. The AFM investigations further revealed the rough surface morphology and a 30 % shrinkage in size of the fosfomycin-treated cell and the leakage of cytoplasmic components from the cell. The damage of cell membrane integrity and the cell surface degradation as observed elaborates the antibacterial activity of fosfomycin. The AFM image analysis also reveals that the fosfomycin inhibits cell division, and prevents the adhesion on the surface discouraging the biofilm attachment. The microtitre plate assay results conform to the atomic force microscopy image analysis. This is the first visual demonstration of the effect of fosfomycin on MRSP cells.
BackgroundBacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies or combinations targeted against biofilm establishment and growth subsequently represent a promising new option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin. We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may also target other staphylococci.ResultsWe determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius biofilm formation compared to treatment with either therapy alone (P < 0.05). Morphological examination of these biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment.ConclusionsHere, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.