Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental friendly technology for synthesis of nanomaterials. Silver has been known to have effective bactericidal properties for centuries. Nowadays, silver based topical dressings have been widely used as a treatment for infection in burns, open wounds, and chronic ulcer. As the pathogenic organisms are getting evolved day by day due to mutation and gaining antibiotic resistance, an important industrial sector of nanoscience deals with the preparation and study of nanoparticles in antibacterial clothing, burn ointments, and coating for medical device. The size of nanomaterials is much smaller than that of most biological molecules and structures; therefore, nanomaterials can be useful in both in vivo and in vitro biomedical research application. The purpose of the study is to synthesize and characterize the plant mediated silver nanoparticles using Clitoria ternatea and Solanum nigrum. Further investigation of the shape and size of nanoparticle was done by X-ray diffraction and scanning electron microscopic studies. A silver nanoparticle at different concentration was assessed for its antibacterial effect, against various nosocomial pathogens.
A simple pyrimidine-based fluorescent probe (R)-4-(anthracen-9-yl)-6- (naphthalen-1-yl)-1,6-dihydropyrimidine-2-amine (ANDPA) was synthesized through the greener one pot reaction and characterized by IR, NMR, and ESI-Mass. Glucose stabilized silver nanoparticles (Glu-AgNPs) were also synthesized and characterized using UV, IR, XRD, SEM, and TEM. When ANDPA was tagged with Glu-AgNPs, the fluorescent intensity of ANDPA decreased drastically. When the monoclonal antibody (Ab) [immunoglobulin G (IgG)] of Pseudomonas aeruginosa (PA) was attached with ANDPA/Glu-AgNPs, the original intensity of the probe was recovered with minimal enhancement at 446 nm. On further attachment of PA with ANDPA/Glu-AgNPs/PA, the fluorescence intensity of the probe was enhanced obviously at 446 nm with red shift. This phenomenon was further supported by SEM and TEM. The linear range of detection is from 8 to 10 CFU/mL, and LOD is 1.5 CFU/mL. The immunosensor was successfully demonstrated to detect Pseudomonas aeruginosa in water, soil, and food products like milk, sugar cane, and orange juices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.