We introduce a new concept for stimulated-Brillouin-scattering-based slow light in optical fibers that is applicable for broadly-tunable frequency-swept sources. It allows slow light to be achieved, in principle, over the entire transparency window of the optical fiber. We demonstrate a slow light delay of 10 ns at 1.55 μm using a 10-m-long photonic crystal fiber with a source sweep rate of 400 MHz/μs and a pump power of 200 mW. We also show that there exists a maximal delay obtainable by this method, which is set by the SBS threshold, independent of sweep rate. For our fiber with optimum length, this maximum delay is ~38 ns, obtained for a pump power of 760 mW., "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82(26), 5229-5232 (1999). "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94(15), 153902 (2005). 8. K. Y. Song, M. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt.
Green lasers with high efficiency are keystone components for mobile projectors. We demonstrate a miniature device (<0.7 cc volume) that utilizes adaptive optics for operation over a 50 °C temperature range without requiring a thermo‐electric cooler. The use of adaptive optics also helps in reducing the cost of the laser assembly.
The CHF3 electron cyclotron resonance (ECR) plasma etched LiNbO3 (LN) surface was analyzed chemically and crystallographically to investigate the dry-etch machining process for LN crystal, which was recently needed to obtain broader-band optical modulators. The etched surface was entirely covered with amorphous-like precipitates having ~70 nm diameter. These precipitates (or a part of them) were thought to be LiF from Auger electron and x-ray photoelectron spectroscopy. The results indicated that the LiF was formed and remained on the etched surface while the Nb was almost completely removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.