Today, a large number of applications depend on deep neural networks (DNN) to process data and perform complicated tasks at restricted power and latency specifications. Therefore, processing-in-memory (PIM) platforms are actively explored as a promising approach to improve the throughput and the energy efficiency of DNN computing systems. Several PIM architectures adopt resistive non-volatile memories as their main unit to build crossbar-based accelerators for DNN inference. However, these structures suffer from several drawbacks such as reliability, low accuracy, large ADCs/DACs power consumption and area, high write energy, etc. In this paper, we present a new mixed-signal in-memory architecture based on the bit-decomposition of the multiply and accumulate operations. Our in-memory inference architecture uses a single FeFET as a non-volatile memory cell. Compared to the prior work, this system architecture provides a high level of parallelism while using only 3-bit ADCs. Also, it eliminates the need for any DAC. In addition, we provide flexibility and a very high utilization efficiency even for varying tasks and loads. Simulations demonstrate that we outperform state-of-the-art efficiencies with 36.5 TOPS/W and can pack 2.05 TOPS with 8-bit activation and 4-bit weight precision in an area of 4.9 mm
2
using 22 nm FDSOI technology. Employing binary operation, we obtain 1169 TOPS/W and over 261 TOPS/W/mm
2
on system level.
This article reports a novel ferroelectric fieldeffect transistor (FeFET)-based crossbar array cascaded with an external resistor. The external resistor is shunted with the column of the FeFET array, as a current limiter and reduces the impact of variations in drain current (I d ), especially in a low threshold voltage (LVT) state. We have designed crossbar arrays of 8 × 8 sizes and performed multiply-and-accumulate (MAC) operations. Furthermore, we have evaluated the performance of the current limited FeFET crossbar array in system-level applications. Finally, the system-level performance evaluation was done by neuromorphic simulation of the resistor-shunted FeFET crossbar array. The crossbar array achieved software-comparable inference accuracy (∼97%) for National Institute of Standards and Technology (MNIST) datasets with multilayer perceptron (MLP) neural network, whereas the crossbar arrays built solely with FeFETs failed to learn, yielding only 9.8% accuracy.
Content addressable memory (CAM) is widely used in associative search tasks due to its parallel pattern matching capability. As more complex and data‐intensive tasks emerge, it is becoming increasingly important to enhance CAM density for improved performance and better area efficiency. To reduce the area overheads, various nonvolatile memory (NVM) devices, such as ferroelectric field‐effect transistors (FeFETs), are used in CAM design. Herein, a novel ultracompact 1FeFET CAM design that enables parallel associative search and in‐memory hamming distance calculation is used, as well as a multibit CAM for exact search using the same CAM cell. The proposed CAM design leverages the 1FeFET1R structure, and compact device designs that integrate the series resistor current limiter into the intrinsic FeFET structure are demonstrated to turn the 1FeFET1R structure into an effective 1FeFET cell. A two‐step search operation of the proposed binary and multibit 1FeFET CAM array through both experiments and simulations is proposed, showing a sufficient sensing margin despite unoptimized FeFET device variation. In genome pattern matching applications, using the hyperdimensional computing paradigm, the design results in a 89.9× speedup and 66.5× improvement in energy efficiency over the state‐of‐the‐art alignment tools on GPU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.