Chemical and isotopic compositions of pyrites are used as biogeochemical tracers in Archean to modern sediments. Moreover, pyrite formation from monosulphide precursors has been proposed to be involved in prebiotic chemistry. However, the factors controlling pyrite formation and distribution in the sedimentary record are incompletely understood. Here, we show that Ni 2+ ions accelerate ~5 times the nucleation of pyrite at ambient temperature. Using Fe and Ni K-edge EXAFS and TEM-EDXS we demonstrate that Ni(II) is directly involved in the nucleation of pyrite synthesised by reacting Fe(III) with Na 2 S in the presence of aqueous Ni(II) impurity. Initial formation of a Ni-enriched pyrite core is followed by overgrowth of a Ni-depleted pyrite shell, leading to compositional zoning of the Fe 1-x Ni x S 2 nanocrystals (x = 0.05 to 0.0004). The molar Ni/Fe ratio in the final aqueous solution was then 2000 times lower than the starting ratio of 0.01. This enhanced and accelerated trapping of Ni by pyrite could be of prime importance in controlling Ni concentration in the ocean during early diagenesis of marine sediments, and could thus have important implications for interpreting abundances of Ni and pyrite in the sedimentary record. In addition, acceleration of pyrite nucleation in the presence of nickel could help understanding the role of Fe-Ni sulphides in catalysing potential prebiotic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.