Angiotensin II (ANG II) is a potent vasoconstrictor and growth promoter. Quantitative receptor autoradiography using the nonselective radioligand [125I]ANG II and subtype-selective competing compounds demonstrated the presence of both ANG II receptor (AT)1 and AT2 receptor recognition sites. In addition, a relatively small population of apparently non-AT1/non-AT2 sites was identified that may represent a novel high affinity ANG II recognition site in human placenta. Using placental membrane preparations, the AT2 receptor antagonist PD123177 failed to compete for [3H]ANG II binding at relevant concentrations, whereas the AT1 receptor antagonist losartan competed in a monophasic manner for all the specific binding, suggesting that the non-AT1/non-AT2 recognition site identified using autoradiography may be a cytosolic binding site. AT1 receptor binding was significantly reduced (P < 0. 02) in intraeuterine growth restriction (IUGR) pregnancies. Western blot analysis confirmed this showing a reduction in AT1 receptor protein. In situ hybridization and immunocytochemistry revealed that AT1 receptor mRNA and protein were localized throughout pregnancy in the cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast, as well as in or around the blood vessels of placental villi. The intensity of the hybridization signal for AT1 receptor mRNA over the syncytium was reduced in IUGR. ANG II evoked a rapid and concentration-dependent release of NO in first trimester cytotrophoblast-like cells that was abolished by the inclusion of the competitive NOS inhibitor NG-monomethyl-L-arginine. Neither losartan nor PD123177 alone significantly inhibited ANG II-evoked NO release, and when cells were stimulated with ANG II in the presence of losartan (10 microM) and PD123177 (10 microM) in combination, NO release was significantly inhibited (P < 0.05). These observations also suggest, for the first time, the existence of a cross-talk between AT1 or AT2 receptors in trophoblast and that the reduction in placental AT1 receptors in IUGR may, in part, account for poor placental function in this disorder.
Angiotensin (ANG) II is not only a potent vasoconstrictor but may also be involved in the regeneration of new blood vessels. In proliferative endometrium, ANG II-like immunoreactivity was detected in glandular epithelium and stroma with negligible staining around the vascular endothelium. In contrast, in secretory endometrium intense immunostaining was seen in the perivascular stromal cells around the endometrial spiral arterioles with negligible staining of the other cell types. Quantitative receptor autoradiography using the nonselective radioligand [125I]-ANG II and subtype selective competing compounds showed that endometrium contained predominantly AT2 receptors, with relatively low expression of AT1 receptors and a novel non-AT,/non-AT2 angiotensin II recognition site that was insensitive to AT1 or AT2 selective ligands. Levels of specific ['"I]-ANG II receptor binding displayed cyclic changes during the menstrual cycle, reaching a maximum in early secretory endometrium and then decreasing in mid to late secretory endometrium to levels seen in early to mid proliferative endometrium. In situ hybridization showed AT1 receptor mRNA expression in the glands and in the endometrial blood vessels. The cyclic changes in ANG TI-like immunoreactivity together with expression of both the known and the novel AT receptor subtypes imply that this octopeptide may play a dual role both in the control of the uterine vascular bed and also in the regeneration of the endometrium after endometrial shedding, acting as an angiogenic and mitogenic mediator. (J. Clin. Invest. 1995. 96:848-857.)
1 The ability of angiotensin II to modulate dopamine release from rat striatal slices in vitro and in the intact rat striatum in vivo was assessed by the microdialysis technique.2 In slices of rat striatum, angiotensin II (0.1-1.0 gM) induced a concentration-related increase in endogenous dopamine release which was maximal (approximately 250% above basal levels) within the first 2-4 min of agonist application and subsequently declined to near
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.