RationaleStrategies to stage and treat cancer rely on a presumption of either localized or widespread metastatic disease. An intermediate state of metastasis termed oligometastasis(es) characterized by limited progression has been proposed. Oligometastases are amenable to treatment by surgical resection or radiotherapy.MethodsWe analyzed microRNA expression patterns from lung metastasis samples of patients with ≤5 initial metastases resected with curative intent.ResultsPatients were stratified into subgroups based on their rate of metastatic progression. We prioritized microRNAs between patients with the highest and lowest rates of recurrence. We designated these as high rate of progression (HRP) and low rate of progression (LRP); the latter group included patients with no recurrences. The prioritized microRNAs distinguished HRP from LRP and were associated with rate of metastatic progression and survival in an independent validation dataset.ConclusionOligo- and poly- metastasis are distinct entities at the clinical and molecular level.
Several computational methods for the prediction of major histocompatibility complex (MHC) class II binding peptides embodying different strengths and weaknesses have been developed. To provide reliable prediction, it is important to design a system that enables the integration of outcomes from various predictors. The construction of a meta-predictor of this type based on a probabilistic approach is introduced in this paper. The design permits the easy incorporation of results obtained from any number of individual predictors. It is demonstrated that this integrated method outperforms six state-of-the-art individual predictors based on computational studies using MHC class II peptides from 13 HLA alleles and three mouse MHC alleles obtained from the Immune Epitope Database and Analysis Resource. It is concluded that this integrative approach provides a clearly enhanced reliability of prediction. Moreover, this computational framework can be directly extended to MHC class I binding predictions.
Motivation: The highly coordinated expression of thousands of genes in an organism is regulated by the concerted action of transcription factors, chromatin proteins and epigenetic mechanisms. High-throughput experimental data for genome wide in vivo protein–DNA interactions and epigenetic marks are becoming available from large projects, such as the model organism ENCyclopedia Of DNA Elements (modENCODE) and from individual labs. Dissemination and visualization of these datasets in an explorable form is an important challenge.Results: To support research on Drosophila melanogaster transcription regulation and make the genome wide in vivo protein–DNA interactions data available to the scientific community as a whole, we have developed a system called Flynet. Currently, Flynet contains 101 datasets for 38 transcription factors and chromatin regulator proteins in different experimental conditions. These factors exhibit different types of binding profiles ranging from sharp localized peaks to broad binding regions. The protein–DNA interaction data in Flynet was obtained from the analysis of chromatin immunoprecipitation experiments on one color and two color genomic tiling arrays as well as chromatin immunoprecipitation followed by massively parallel sequencing. A web-based interface, integrated with an AJAX based genome browser, has been built for queries and presenting analysis results. Flynet also makes available the cis-regulatory modules reported in literature, known and de novo identified sequence motifs across the genome, and other resources to study gene regulation.Contact: grossman@uic.eduAvailability: Flynet is available at https://www.cistrack.org/flynet/.Supplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.