Hexagonal boron nitride (h-BN) has emerged as a strong candidate for twodimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of stateof-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.The ORCID identification number(s) for the author(s) of this article can be found under
Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio‐nanocomposite comprised largely of egg‐derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.
Photoacoustic imaging, frequently coregistered with ultrasonic imaging, can provide functional and cellular/molecular information about tissue within the anatomical landmarks of an imaged region. This review details the fundamentals of photoacoustic imaging and its most promising imaging applications. Particular attention is paid to photoacoustic imaging's relationship with ultrasound, focusing on distinct differences and similarities between the two modalities and highlighting the mutual benefit of using both concurrently in certain preclinical and clinical applications. Much like its origins as an imaging modality were intertwined with ultrasonic imaging (namely, its acoustic transducers and hardware), the future of photoacoustic imaging-particularly in the clinical arena-similarly depends on ultrasound and its time-tested ability to provide real-time visualization of soft tissue.
The electrochemical conversion of carbon dioxide (CO2) to methane (CH4), which can be used not only as fuel but also as a hydrogen carrier, has drawn great attention for use in supporting carbon capture and utilization. The design of active and selective electrocatalysts with exceptional CO2‐to‐CH4 conversion efficiency is highly desirable; however, it remains a challenge. Here a molecular tuning strategy−in situ amine functionalization of nitrogen‐doped graphene quantum dots (GQDs) for highly efficient CO2‐to‐CH4 conversion is presented. Amine functionalized nitrogen‐doped GQDs achieve a CH4 Faradic efficiency (FE) of 63% and 46%, respectively, at CH4 partial current densities of 170 and 258 mA cm−2, approximating to or even outperforming state‐of‐the‐art Cu‐based electrocatalysts. These GQDs also convert CO2 to C2 products mainly including C2H4 and C2H5OH with a maximum FE of ≈10%. A systematic analysis reveals that the CH4 yield varies linearly with amine group content, whereas the C2 production rate is positively dependent on pyridinic N dopant content. This work provides insight into the rational design of carbon catalysts with CO2‐to‐CH4 conversion efficiency at the industrially relevant level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.