The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the “Rosalind Franklin” rover in 2022 for a landing on Mars in
goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of ∼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.
Abstract. We have conducted an extensive survey of the Magellan data to reassess the population of coronae. We identify a new type of coronae, here referred to as 'Type 2 coronae', having the same basic morphology as previously identified coronae (Type 1), but lacking a significant (>50%) annulus of closely spaced fractures. 106 Type 2 coronae are included in the new database giving a total of 515 coronae on Venus. The characteristics of the expanded population of Type 1 coronae are similar to those of the previously described population, but the Type 2 coronae are smaller, tend to have relatively flat interiors surrounded by a topographic tim, and are more likely to be found isolated from other features. Our observations, in particular the morphology and setting of the Type 2 coronae, may provide supporting evidence for the existence of a depleted mantle layer under the venusian plains.
Valley networks are some of the strongest lines of evidence for extensive fluvial activity on early (Noachian; >3.7 Ga) Mars. However, their purported absence on certain ancient terrains, such as Arabia Terra, is at variance with patterns of precipitation as predicted by “warm and wet” climate models. This disagreement has contributed to the development of an alternative “icy highlands” scenario, whereby valley networks were formed by the melting of highland ice sheets. Here, we show through regional mapping that Arabia Terra shows evidence for extensive networks of sinuous ridges. We interpret these ridge features as inverted fluvial channels that formed in the Noachian, before being subject to burial and exhumation. The inverted channels developed on extensive aggrading flood plains. As the inverted channels are both sourced in, and traverse across, Arabia Terra, their formation is inconsistent with discrete, localized sources of water, such as meltwater from highland ice sheets. Our results are instead more consistent with an early Mars that supported widespread precipitation and runoff
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.