Protein-DNA interactions were studied on the basis of capillary electrophoretic separation of bound from free fluorescent probe followed by on-line detection with laser-induced fluorescence polarization. Changes in electrophoretic mobility and fluorescence anisotropy upon complex formation were monitored for the determination of binding affinity and stoichiometry. The method was applied to study the interactions of single-stranded DNA binding protein (SSB) with synthetic oligonucleotides and single-stranded DNA. Increases in fluorescence anisotropy and decreases in electrophoretic mobility upon their binding to SSB were observed for the fluorescently labeled 11-mer and 37-mer oligonucleotide probes. Fluorescence anisotropy and electrophoretic mobility were used to determine the binding constants of the SSB with the 11-mer (5 x 10(6) M(-1)) and the 37-mer (23 x 10(6) M(-1)). Alternatively, a fluorescently labeled SSB was used as a probe, and the formation of multiple protein-DNA complexes that differ in stoichiometry was observed. The results demonstrate the applicability of the method to study complex interactions between protein and DNA.
A plug electroosmotic velocity profile is generally assumed to be characteristic of capillary electrochromatography. However, this ideal plug flow may be illusive in some experiments with packed-capillary columns due to overlap of electrical double layers in flow channels. We report here a theoretical analysis of the double-layer overlap effects in packed-capillary columns, which is based on Rice and Whitehead's theory of electroosmotic flow combined with a capillary tube model for porous packing. The results show that the electroosmotic velocity under the influence of double-layer overlap depends strongly on the operating parameters, which increases with the column porosity, the particle diameter, and the electrolyte concentration.
An improved procedure is described for preparation of novel mesoporous microspheres consisting of magnetic nanoparticles homogeneously dispersed in a silica matrix. The method is based on a three-step process, involving (i) formation of hematite/silica composite microspheres by urea-formaldehyde polymerization, (ii) calcination of the composite particles to remove the organic constituents, and (iii) in situ transformation of the iron oxide in the composites by hydrogen reductive reaction. The as-synthesized magnetite/silica composite microspheres were nearly monodisperse, mesoporous, and magnetizable, with as typical values an average diameter of 3.5 microm, a surface area of 250 m(2)/g, a pore size of 6.03 nm, and a saturation magnetization of 9.82 emu/g. These magnetic particles were tested as adsorbents for isolation of genomic DNA from Saccharomyces cerevisiae cells and maize kernels. The results are quite encouraging as the magnetic particle based protocols lead to the extraction of genomic DNA with satisfactory integrity, yield, and purity. Being hydrophilic in nature, the porous magnetic silica microspheres are considered a good alternative to polystyrene-based magnetic particles for use in biomedical applications where nonspecific adsorption of biomolecules is to be minimized.
Affinity capillary electrophoresis (ACE) with laser-induced fluorescence polarization (LIFP) detection is described, with examples of affinity interaction studies. Because fluorescence polarization is sensitive to changes in the rotational motion arising from molecular association or dissociation, ACE-LIFP is capable of providing information on the formation of affinity complexes prior to or during CE separation. Unbound, small fluorescent probes generally have little fluorescence polarization because of rapid rotation of the molecule in solution. When the small fluorescent probe is bound to a larger affinity agent, such as an antibody, the fluorescence polarization (and anisotropy) increases due to slower motion of the much larger complex molecule in the solution. Fluorescence polarization results are obtained by simultaneously measuring fluorescence intensities of vertical and horizontal polarization planes. Applications of CE-LIFP to both strong and weak binding systems are discussed with antibody-antigen and DNA-protein binding as examples. For strong affinity binding, such as between cyclosporine and its antibody, complexes are formed prior to CE-LIFP analysis. For weaker binding, such as between single-stranded DNA and its binding protein, the single-stranded DNA binding protein is added to the CE separation buffer to enhance dynamic formation of affinity complexes. Both fluorescence polarization (and anisotropy) and mobility shift results are complementary and are useful for immunoassays and binding studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.