The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2C MXene wrapped with S‐nitrosothiol (RSNO)‐grafted mesoporous silica with 3D‐printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)‐triggered photonic hyperthermia of MXene in the NIR‐II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone‐regeneration bioactivity, augmented by sufficient blood supply triggered by on‐demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.
Early surgical resection and chemotherapy of bone cancer are commonly used in the treatment of bone tumor, but it is still highly challenging to prevent recurrence and fill the bone defect caused by the resection site. In this work, we report a rational integration of photonic-responsive two-dimensional (2D) ultrathin niobium carbide (Nb2C) MXene nanosheets (NSs) into the 3D-printed bone-mimetic scaffolds (NBGS) for osteosarcoma treatment. The integrated 2D Nb2C-MXene NSs feature specific photonic response in the second near-infrared (NIR-II) biowindow with high tissue-penetrating depth, making it highly efficient in killing bone cancer cells. Importantly, Nb-based species released by the biodegradation of Nb2C MXene can obviously promote the neogenesis and migration of blood vessels in the defect site, which can transport more oxygen, vitamins and energy around the bone defect for the reparative process, and gather more immune cells around the defect site to accelerate the degradation of NBGS. The degradation of NBGS provides sufficient space for the bone remodeling. Besides, calcium and phosphate released during the degradation of the scaffold can promote the mineralization of new bone tissue. The intrinsic multifunctionality of killing bone tumor cell and promoting angiogenesis and bone regeneration makes the engineered Nb2C MXene-integrated composite scaffolds a distinctive implanting biomaterial on the efficient treatment of bone tumor.
Malignant bone tumors are one of the major serious diseases in clinic. Inferior reconstruction of new bone and rapid propagation of residual tumor cells are the main challenges to surgical intervention. Herein, a bifunctional DTC@BG scaffold for near‐infrared (NIR)‐activated photonic thermal ablation of osteosarcoma and accelerated bone defect regeneration is engineered by in situ growth of NIR‐absorbing cocrystal (DTC) on the surface of a 3D‐printing bioactive glass (BG) scaffold. The prominent photothermal conversion performance and outstanding bone regeneration capability of DTC@BG scaffolds originate from the precise tailoring of the bandgap between the electron donors and acceptors of DTC and promote new bone growth performance of BG scaffolds. DTC@BG scaffolds not only significantly promote tumor cell ablation in vitro, but also effectively facilitate bone tumor suppression in vivo. In particular, DTC@BG scaffolds exhibit excellent capability in stimulating osteogenic differentiation and angiogenesis, and finally promote newborn bone formation in the bone defects. This research represents the first paradigm for ablating osteosarcoma and facilitating new bone formation through precise modulation of electron donors and acceptors in the cocrystal, which offers a new avenue to construct high‐efficiency therapeutic platforms based on cocrystal strategy for ablation of malignant bone tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.