In this contribution, the capabilities of pressurized liquid extraction (PLE) using food-grade solvents, such as water and ethanol, to obtain antioxidant extracts rich on polyphenolic compounds from olive leaves are studied. Different extraction conditions were tested, and the PLE obtained extracts were characterized in vitro according to their antioxidant capacity (using the DPPH radical scavenging and the TEAC assays) and total phenols amounts. The most active extracts were obtained with hot pressurized water at 200 °C (EC(50) 18.6 μg/mL) and liquid ethanol at 150 °C (EC(50) 27.4 μg/mL), attaining at these conditions high extraction yields, around 40 and 30%, respectively. The particular phenolic composition of the obtained extracts was characterized by LC-ESI-MS. Using this method, 25 different phenolic compounds could be tentatively identified, including phenolic acids, secoiridoids, hydroxycinnamic acid derivatives, flavonols and flavones. Among them, hydroxytyrosol, oleuropein and luteolin-glucoside were the main phenolic antioxidants and were quantified on the extracts together with other minor constituents, by means of a UPLC-MS/MS method. Results showed that using water as extracting agent, the amount of phenolic compounds increased with the extraction temperature, being hydroxytyrosol the main phenolic component on the water PLE olive leaves extracts, reaching up to 8.542 mg/g dried extract. On the other hand, oleuropein was the main component on the extracts obtained with ethanol (6.156-2.819 mg/g extract). Results described in this work demonstrate the good possibilities of using PLE as a useful technique for the valorization of by-products from the olive oil industry, such as olive leaves.
In this work, a new, easy and rapid method of analyzing phenolic compounds in pollen extract, based on capillary electrophoresis coupled with electrospray ionization time-of-flight-mass spectrometry (CE-ESI-TOF-MS), has been developed. A systematic investigation of separation parameters has been performed with respect to resolution, sensitivity, analysis time and peak shape. The electrophoretic parameters and electrospray conditions must be optimized to obtain reproducible analyses. Using this method, several important phenolic compounds such as acetin-glucoside, 7-O-methylherbacetin-3-sophoroside, galloyl-glucose, quercetin-3-sophoroside, apigenin-6,8-di-C-glycoside, quercetin-3-rutinoside, genistein-7-O-beta-D: -glucoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside and 2',4',6'-trihydroxy-3'-formyldihydrochalcone have been determined directly from pollen extract. The efficiency, the rapidity, the small amounts of sample required, and the high resolution of CE coupled with the sensitivity, the selectivity, the accurate masses and the true isotopic patterns obtained using TOF-MS point to the potential of this approach for identifying the phenolic compounds present in pollen.
The incidence of resistance to various antibiotics as well as the capacity to elicit aggregation response to sex pheromones have been investigated in strains of Enterococcus faecalis isolated from clinical and municipal waste waters (MWW). While clinical isolates showed a high incidence of antibiotic resistance (87%) and sex pheromone response (33%), these traits appeared with a much lower frequency in MWW isolates (12% and 4% respectively). The simultaneous incidence of both traits was of 52% and 0% for clinical and MWW isolates, respectively. The capacity to elicit a positive pheromone response as well as antibiotic resistance traits seemed to be strongly correlated with the presence of gelatinase activity among clinical isolates. Among MWW isolates, only sex pheromone response seemed to correlate with the presence of gelatinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.