The intestinal microbiota are important during enteral tube feeding because they exert colonization resistance and produce SCFAs. However, the effect of the enteral formula composition on major bacterial groups of the microbiota has not been clearly defined. The aim of this study was to investigate the effect of enteral formulas with and without prebiotic fructooligosaccharides (FOS) and fiber on the fecal microbiota and SCFAs. Healthy subjects (n = 10; 4 men, 6 women) consumed both a standard enteral formula and one containing FOS (5.1 g/L) and fiber (8.9 g/L) as a sole source of nutrition for 14 d in a randomized, double-blind, crossover trial with a 6-wk washout phase. Fecal samples were collected at the start and end of each formula phase, and were analyzed for major bacterial groups and SCFA concentrations using fluorescent in situ hybridization and GLC, respectively. Although there were reductions in total fecal bacteria due to both formula treatments, concentrations were higher after the FOS/fiber formula period compared with the standard formula period (11.2 +/- 0.2 vs. 11.0 +/- 0.2 log(10) cells/g, P = 0.005). The FOS/fiber formula increased bifidobacteria (P = 0.004) and reduced clostridia (P = 0.006). Compared with the standard formula, the FOS/fiber formula resulted in higher concentrations of total SCFA (332.4 +/- 133.8 vs. 220.1 +/- 124.5 micromol/g, P = 0.022), acetate (219.6 +/- 96.3 vs. 136.8 +/- 74.5 micromol/g, P = 0.034) and propionate (58.4 +/- 37.4 vs. 35.6 +/- 25.5 micromol/g, P = 0.02). This study demonstrates that standard enteral formula leads to adverse alterations to the fecal microbiota and SCFA concentrations in healthy subjects, and these alterations are partially prevented by fortification of the formula with FOS and fiber.
The human skin is densely colonized by a highly diverse microbiota comprising all three domains of life. Long believed to represent mainly a source of infection, the human skin microbiota is nowadays well accepted as an important driver of human (skin) health and well-being. This microbiota is influenced by many host and environmental factors and interacts closely with the skin immune system. Although cause and effect are usually difficult to discriminate, changes in the skin microbiota clearly play a role in the pathobiology of many types of skin disease and cosmetic disorders. Consequently, treatment and prevention strategies have to respect this role, rendering pre- and probiotic and even transplantation therapies an additional option to the use of antibiotics.
The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members,
It is generally accepted that the bacterial community resident in the human intestinal tract has a major impact on gastrointestinal function and thereby on human health and well-being. Considerable efforts have been made to influence the intestinal microbiota by dietary means in such a way that the health of the host is beneficially affected. Pro- and prebiotics are food products that are specially designed for this purpose. Parallel to the increase in the acceptance of such products by the consumer, the scientific interest in the mechanisms underlying their presumed effects, such as pathogen inhibition, immune modulation or anti-carcinogenicity, has grown continuously in recent years. Some of these effects have been established by several independent studies, but others are still controversial. This review relates the health claims made for the pro- and prebiotic food products to the facts established by in vivo and in vitro studies. The assessment of pro- and prebiotic effects on the microbial gut ecosystem is highly improved and facilitated by the application of molecular methods. Biotechnological aspects of the production of pro- and prebiotics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.